1
|
Borys F, Tobiasz P, Poterała M, Fabczak H, Krawczyk H, Joachimiak E. Systematic Studies on Anti-Cancer Evaluation of Stilbene and Dibenzo[ b,f]oxepine Derivatives. Molecules 2023; 28:molecules28083558. [PMID: 37110792 PMCID: PMC10146957 DOI: 10.3390/molecules28083558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and β-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Joachimiak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Tobiasz P, Borys F, Borecka M, Krawczyk H. Synthesis and Investigations of Building Blocks with Dibenzo[ b, f] Oxepine for Use in Photopharmacology. Int J Mol Sci 2021; 22:11033. [PMID: 34681697 PMCID: PMC8539288 DOI: 10.3390/ijms222011033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
The synthesis of photoswitchable azo-dibenzo[b,f]oxepine derivatives and microtubule inhibitors were described. Subsequently, we examined the reaction of methoxy derivative 3-nitrodibenzo[b,f]oxepine with different aldehydes and in the presence of BF3·OEt2 as a catalyst. Our study provided a very concise method for the construction of the azo-dibenzo[b,f]oxepine skeleton. The analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.
Collapse
Affiliation(s)
- Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.T.); (F.B.); (M.B.)
| | - Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.T.); (F.B.); (M.B.)
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Marta Borecka
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.T.); (F.B.); (M.B.)
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.T.); (F.B.); (M.B.)
| |
Collapse
|
3
|
Borys F, Tobiasz P, Poterała M, Krawczyk H. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomed Pharmacother 2020; 133:110973. [PMID: 33378993 DOI: 10.1016/j.biopha.2020.110973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
Microtubules (composed of α- and β-tubulin heterodimers) ubiquitous cellular polymers are important components of the cytoskeleton and play diverse roles within the cell, such as maintenance of cell structure, protein trafficking or chromosomal segregation during cell division. The polymers of tubulin play a pivotal role in mitosis and are regarded as an excellent target for chemotherapeutic agents to treat cancer. This review presents a brief overview of the synthesis and mechanism of action of new compounds targeting the dynamic of microtubule - tubulin polymerization/depolymerization. It is divided into the following parts: section I concerns targeting microtubules- tubulin-binding drugs derivatives of stilbene. In section II there are presented photoswitchable inhibitors of microtubule dynamics. Section III concerns using macrocyclic compounds as tubulin inhibitors. In this review, the authors focused primarily on reports produced inthe last five years and the latest strategies in this field.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; The Nencki Institute of Experimental Biology Polish Academy of Sciences, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
4
|
Panda P, Nayak S, Bhakta S, Mohapatra S, Murthy TR. Design and synthesis of (Z/E)-2-phenyl/H-3-styryl-2H-chromene derivatives as antimicrotubule agents. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1520-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Tobiasz P, Poterała M, Jaśkowska E, Krawczyk H. Synthesis and investigation of new cyclic molecules using the stilbene scaffold. RSC Adv 2018; 8:30678-30682. [PMID: 35548740 PMCID: PMC9085490 DOI: 10.1039/c8ra04249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed. The use of boron trifluoride diethyl etherate as the catalyst, both with and without paraformaldehyde, allows us to obtain new substituted dioxanes, oxanes, cyclic compounds or dimer. The analysis of products was run using experimental and theoretical methods. A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed.![]()
Collapse
Affiliation(s)
- Piotr Tobiasz
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Marcin Poterała
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Eliza Jaśkowska
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
6
|
Krawczyk H. Marking of metabolites in the diagnostics of metabolic diseases and in the investigation of xenobiotics metabolism using NMR spectroscopy. J Pharm Biomed Anal 2016; 130:169-180. [PMID: 27260140 DOI: 10.1016/j.jpba.2016.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/26/2022]
Abstract
There are currently no sound estimates of the number of children born with a serious congenital disorder attributable to genetic or environmental causes (World Health Organization) but there is a supposed number of babies born with birth defects per year: in the world approximately 7.9 million children (6% of births). There is conducted population-based screening by the individual countries. The specialised methods are used when it is not possible to diagnose disease in screening. In recent years in the diagnostics of these disorders the methods of Magnetic Resonance Spectroscopy of the brain (in vivo1H-MRS) and high resolution NMR spectroscopy gain in importance. The manuscript focused on developing the method of marking the metabolic diseases markers of various origins using NMR spectroscopy (including synthesis of markers). Considering the disorders occurring among children, according to Hoffman, Zschocke, Nyhan, there are three following groups of inherited metabolic diseases: disorders of intermediary metabolism, disorders of the biosynthesis and breakdown of complex molecules and neurotransmitter defects and related disorders. The presented investigation is focused on: a study of selected compounds that cause disorders of intermediary metabolism, a study of compounds that cause disorders of the biosynthesis and breakdown of complex molecules and a study of compounds that cause neurotransmitter defects and related disorders. In the subsequent chapter of manuscript there are presented the results of investigation concerning the metabolism of xenobiotics that could potentially be used in therapy of inherited metabolic diseases, basing on stilbene derivatives. In the last chapter there are presented the results of experiments with creatinine- the metabolite produced in muscles.
Collapse
Affiliation(s)
- Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
7
|
Krawczyk H, Wrzesiński M, Mielecki D, Szczeciński P, Grzesiuk E. Synthesis of derivatives of methoxydibenzo[ b, f ]oxepine in the presence of sodium azide. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Adiabouah Achy-Brou CA, Billack B. A comparative assessment of the cytotoxicity and nitric oxide reducing ability of resveratrol, pterostilbene and piceatannol in transformed and normal mouse macrophages. Drug Chem Toxicol 2016; 40:36-46. [PMID: 27079867 DOI: 10.3109/01480545.2016.1169542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the pharmacological effects of three stilbenoids, resveratrol (RES), pterostilbene (PTR) and piceatannol (PIC), in transformed and normal macrophages. Our first aim was to comparatively assess the cytotoxicity of RES, PTR and PIC in unstimulated transformed mouse macrophages (RAW 264.7 cells) and primary peritoneal macrophages (PMs) harvested from both wild type and Nrf2 (nuclear factor erythroid 2-related factor 2)-deficient female mice. Our second aim was to investigate whether the inhibitory effect of RES, PTR and PIC on nitric oxide (NO) release from stimulated PMs depends on the status of the transcription factor Nrf2. The rationale for investigating Nrf2 status was based upon recent reports showing that certain compounds (sulforaphane and linalool) suppress LPS-induced inflammation in an Nrf2-dependent manner. Cell viability studies confirmed our prior work in unstimulated RAW 264.7 cells, with cytotoxic potency decreasing in the order of PTR > PIC > RES. Unstimulated PMs, regardless of Nrf2 status, were less sensitive to stilbenes, requiring at least a threefold higher stilbene concentration to inhibit cell viability, with cytotoxic potency again decreasing in the order of PTR > PIC > RES. In studies focused on our second aim, IC50 values for NO inhibition (measured as [Formula: see text]) in wild type PMs were similar for all three stilbenes (∼10 μM). In Nrf2-deficient PMs, the IC50 for NO inhibition by PIC did not change; however, a rightward shift in the concentration effect curve was observed for both RES and PTR, indicating a role for Nrf2 in the suppression of LPS-induced [Formula: see text] accumulation by these particular stilbenes.
Collapse
Affiliation(s)
| | - Blase Billack
- a Department of Pharmaceutical Sciences , College of Pharmacy and Health Sciences, St. John's University , Jamaica , NY , USA
| |
Collapse
|