1
|
García Méndez MDC, Encarnación-Guevara S, Martínez Batallar ÁG, Gómez-Caudillo L, Bru-Martínez R, Martínez Márquez A, Selles Marchart S, Tovar-Sánchez E, Álvarez-Berber L, Marquina Bahena S, Perea-Arango I, Arellano-García JDJ. High variability of perezone content in rhizomes of Acourtia cordata wild plants, environmental factors related, and proteomic analysis. PeerJ 2023; 11:e16136. [PMID: 38025722 PMCID: PMC10656900 DOI: 10.7717/peerj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Collapse
Affiliation(s)
- Ma del Carmen García Méndez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Leopoldo Gómez-Caudillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roque Bru-Martínez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Ascensión Martínez Márquez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Susana Selles Marchart
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Silvia Marquina Bahena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | |
Collapse
|
2
|
Bhardwaj A, Sharma A, Cooper R, Bhardwaj G, Gaba J, Mutreja V, Chauhan A. A comprehensive phytochemical, ethnomedicinal, pharmacological ecology and conservation status of Picrorhiza kurroa Royle ex Benth.: An endangered Himalayan medicinal plant. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Optimization of protein extraction and two-dimensional gel electrophoresis profiles for the identification of Cordyceps sinensis and other similar species. PLoS One 2018; 13:e0202779. [PMID: 30133529 PMCID: PMC6105017 DOI: 10.1371/journal.pone.0202779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
Abstract
Given that Chinese materia medica (CMM) is expensive and rare, people take tremendous risk to adulterate and falsify Cordyceps sinensis with counterfeit species with similar morphological features. It is thus essential to develop new methods to identify the authenticity of Cordyceps sinensis. It is hypothesized in this study that Cordyceps sinensis possesses certain protein biomarkers distinct from its counterfeits, which can be identified by proteomic technologies for authentication purposes. This is the first study that aims to optimize the conditions for extracting proteins from Cordyceps sinensis, a hybrid of fungal-animal CMM, and to compare the two-dimensional gel electrophoresis (2-DE) profiles between different Cordyceps species. Two different protein extraction buffer systems, namely, phenol/sodium dodecyl sulfate (SDS) buffer or lysis buffer, were evaluated, where the preparation using lysis buffer yielded better protein content. The results also showed that extraction with lysis buffer without pre- or post-washing of samples was the most effective protocol, with over 220% of protein yield and 819 protein spots detected on a 2-DE gel. Moreover, the results demonstrated that Cordyceps sinensis possesses protein biomarkers distinct from its counterfeits, and these biomarkers are not source- or origin-dependent, strongly supporting the feasibility of using identified biomarkers as indicators for authentication of Cordyceps species. The findings of this study warrant further investigations on the structural identification of protein biomarkers of Cordyceps species.
Collapse
|
4
|
Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. Phytotrapy of cyclophosphamide-induced immunosuppression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1262-1275. [PMID: 26026872 DOI: 10.1016/j.etap.2015.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Cyclophosphamide (CP) is a cytotoxic drug that can suppress both humoral and cellular immunity. Combining traditional medicinal herbs and chemotherapy drugs are used to improve immunity and quality of life performance status. In this paper, the effects of plant extracts, active components and their derivatives on immunosuppression of CP are discussed. Appropriate keywords were used to search through PubMed, Google Scholar, and Sciverse. All relevant results published from 1990 to date were chosen for final review. Over 50 references were found in which plant extracts, active components and their derivatives have been tested for their immune protective effects against CP-induced immune toxicity. Although there are several plants shown to be effective in animal models, no study was carried out on human subjects. According to the results; we can claim that plants and their active ingredients are good candidates for alternative adjuvant chemotherapy in reducing the immunotoxicity of CP.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Vahdati Hassani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Heidari
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Medical Toxicology Research Center and Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|