1
|
Zhang L, Xu L, Wang Y, Zhang X, Xue T, Sun Q, Tang H, Li M, Cao X, Shi F, Zhang G, Zhang S, Hu Z. Histone methyltransferase Setdb1 mediates osteogenic differentiation by suppressing the expression of miR-212-3p under mechanical unloading. Cell Signal 2023; 102:110554. [PMID: 36476391 DOI: 10.1016/j.cellsig.2022.110554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that multiple mechanisms are involved in bone loss induced by mechanical unloading. Thus far, few study has established the pathophysiological role of histone modification for osteogenic differentiation under mechanical unloading. Here we demonstrated that the histone H3 lysine 9 (H3K9) methyltransferase Setdb1, which was sensitive to mechanical unloading, was increased during osteogenic differentiation of MC3T3-E1 cells for the first time. Knockdown of Setdb1 significantly blocked osteoblast function in vivo and in vitro. Through bioinformatics analysis of candidate miRNAs regulated by H3K9me3, we further identified that Setdb1 inhibited the expression of miR-212-3p by regulating the formation of H3K9me3 in the promoter region. Mechanically, we revealed that miR-212-3p was upregulated under mechanical unloading and suppressed osteogenic differentiation by directly downregulating High mobility group box 1 protein (Hmgb1) expression. Furthermore, we verified the molecular mechanism of the SETDB1/miR-212-3p/HMGB1 pathway in hFOB cells under mechanical unloading. In summary, these data demonstrate the essential function of the Setdb1/miR-212-3p/Hmgb1 pathway in osteogenic differentiation under mechanical unloading, and present a potential protective strategies against bone loss induced by mechanical unloading.
Collapse
Affiliation(s)
- Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, 730050, Lanzhou, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Tong Xue
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Quan Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Hao Tang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Meng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; The Medical College of Yan'an University, 716000 Yan'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
[68Ga]Ga-Pentixafor and Sodium [18F]Fluoride PET Can Non-Invasively Identify and Monitor the Dynamics of Orthodontic Tooth Movement in Mouse Model. Cells 2022; 11:cells11192949. [PMID: 36230911 PMCID: PMC9562206 DOI: 10.3390/cells11192949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The cellular and molecular mechanisms of orthodontic tooth movement (OTM) are not yet fully understood, partly due to the lack of dynamical datasets within the same subject. Inflammation and calcification are two main processes during OTM. Given the high sensitivity and specificity of [68Ga]Ga-Pentixafor and Sodium [18F]Fluoride (Na[18F]F) for inflammation and calcification, respectively, the aim of this study is to assess their ability to identify and monitor the dynamics of OTM in an established mouse model. To monitor the processes during OTM in real time, animals were scanned using a small animal PET/CT during week 1, 3, and 5 post-implantation, with [68Ga]Ga-Pentixafor and Na[18F]F. Both tracers showed an increased uptake in the region of interest compared to the control. For [68Ga]Ga-Pentixafor, an increased uptake was observed within the 5-week trial, suggesting the continuous presence of inflammatory markers. Na[18F]F showed an increased uptake during the trial, indicating an intensification of bone remodelling. Interim and end-of-experiment histological assessments visualised increased amounts of chemokine receptor CXCR4 and TRAP-positive cells in the periodontal ligament on the compression side. This approach establishes the first in vivo model for periodontal remodelling during OTM, which efficiently detects and monitors the intricate dynamics of periodontal ligament.
Collapse
|
3
|
Mechanical Compression by Simulating Orthodontic Tooth Movement in an In Vitro Model Modulates Phosphorylation of AKT and MAPKs via TLR4 in Human Periodontal Ligament Cells. Int J Mol Sci 2022; 23:ijms23158062. [PMID: 35897640 PMCID: PMC9331670 DOI: 10.3390/ijms23158062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Mechanical compression simulating orthodontic tooth movement in in vitro models induces pro-inflammatory cytokine expression in periodontal ligament (PDL) cells. Our previous work shows that TLR4 is involved in this process. Here, primary PDL cells are isolated and characterized to better understand the cell signaling downstream of key molecules involved in the process of sterile inflammation via TLR4. The TLR4 monoclonal blocking antibody significantly reverses the upregulation of phospho-AKT, caused by compressive force, to levels comparable to controls by inhibition of TLR4. Phospho-ERK and phospho-p38 are also modulated in the short term via TLR4. Additionally, moderate compressive forces of 2 g/cm2, a gold standard for static compressive mechanical stimulation, are not able to induce translocation of Nf-kB and phospho-ERK into the nucleus. Accordingly, we demonstrated for the first time that TLR4 is also one of the triggers for signal transduction under compressive force. The TLR4, one of the pattern recognition receptors, is involved through its specific molecular structures on damaged cells during mechanical stress. Our findings provide the basis for further research on TLR4 in the modulation of sterile inflammation during orthodontic therapy and periodontal remodeling.
Collapse
|
4
|
Local administration of HMGB-1 promotes bone regeneration on the critical-sized mandibular defects in rabbits. Sci Rep 2021; 11:8950. [PMID: 33903607 PMCID: PMC8076241 DOI: 10.1038/s41598-021-88195-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/08/2021] [Indexed: 01/02/2023] Open
Abstract
Reconstruction of a critical-sized osseous defect is challenging in maxillofacial surgery. Despite novel treatments and advances in supportive therapies, severe complications including infection, nonunion, and malunion can still occur. Here, we aimed to assess the use of a beta-tricalcium phosphate (β-TCP) scaffold loaded with high mobility group box-1 protein (HMGB-1) as a novel critical-sized bone defect treatment in rabbits. The study was performed on 15 specific pathogen-free New Zealand rabbits divided into three groups: Group A had an osseous defect filled with a β-TCP scaffold loaded with phosphate-buffered saline (PBS) (100 µL/scaffold), the defect in group B was filled with recombinant human bone morphogenetic protein 2 (rhBMP-2) (10 µg/100 µL), and the defect in group C was loaded with HMGB-1 (10 µg/100 µL). Micro-computed tomography (CT) examination demonstrated that group C (HMGB-1) showed the highest new bone volume ratio, with a mean value of 66.5%, followed by the group B (rhBMP-2) (31.0%), and group A (Control) (7.1%). Histological examination of the HMGB-1 treated group showed a vast area covered by lamellar and woven bone surrounding the β-TCP granule remnants. These results suggest that HMGB-1 could be an effective alternative molecule for bone regeneration in critical-sized mandibular bone defects.
Collapse
|
5
|
Azraq I, Craveiro RB, Niederau C, Brockhaus J, Bastian A, Knaup I, Neuss S, Wolf M. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann Anat 2021; 234:151668. [PMID: 33400981 DOI: 10.1016/j.aanat.2020.151668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023]
Abstract
Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.
Collapse
Affiliation(s)
- Irma Azraq
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany.
| | - Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Julia Brockhaus
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| |
Collapse
|
6
|
Yamashiro K, Ideguchi H, Aoyagi H, Yoshihara-Hirata C, Hirai A, Suzuki-Kyoshima R, Zhang Y, Wake H, Nishibori M, Yamamoto T, Takashiba S. High Mobility Group Box 1 Expression in Oral Inflammation and Regeneration. Front Immunol 2020; 11:1461. [PMID: 32760399 PMCID: PMC7371933 DOI: 10.3389/fimmu.2020.01461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about 30 kDa. It is released from a variety of cells into the extracellular milieu in response to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or without forming a complex with other molecules. HMGB1 mediates various mechanisms such as inflammation, cell migration, proliferation, and differentiation. On the other hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand (CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1 induces pro-inflammatory cytokine expression, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which prolong inflammation. In contrast, wound healing after tooth extraction or titanium dental implant osseointegration requires an initial acute inflammation, which is regulated by secreted HMGB1. This indicates that secreted HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by comparing its function and regulation with its function in other diseases. We also discuss the necessity for further studies in this field to provide more specific scientific evidence for dentistry.
Collapse
Affiliation(s)
- Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Aoyagi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Yoshihara-Hirata
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anna Hirai
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Risa Suzuki-Kyoshima
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yao Zhang
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Marciniak J, Lossdörfer S, Knaup I, Bastian A, Craveiro RB, Jäger A, Wolf M. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro. Clin Oral Investig 2019; 24:1411-1419. [PMID: 31691860 DOI: 10.1007/s00784-019-03111-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Biomechanical orthodontics loading of the periodontium initiates a cascade of inflammatory signaling events that induce periodontal remodeling and finally facilitate orthodontic tooth movement. Pattern recognition receptors such as toll-like receptors (TLRs) have been well characterized for their ability to induce the activation of inflammatory, immunomodulatory cytokines. Here, we examined whether the cellular response of human periodontal ligament (hPDL) cells to mechanical stress involves TLR-4 signaling in vitro. MATERIALS AND METHODS Confluent hPDL cells were cultured in the presence of 5 μg/ml TLR-4 antibody (TLR-4ab) for 1 h prior to the induction of compressive forces by the use of round glass plates for 24 h. At harvest, interleukin-6 and interleukin-8 (IL-6, IL-8) mRNA and protein expression were analyzed by real-time PCR and ELISA. The immunomodulatory role of mechanical cell stress and TLR-4 signaling was addressed in co-culture experiments of hPDL and THP-1 cells targeting monocyte adhesion and by culturing osteoclastic precursors (RAW 264.7) in the presence of the conditioned medium of hPDL cells that had been mechanically loaded before. RESULTS Basal expression of IL-6 and IL-8 was not affected by TLR-4ab, but increased significantly upon mechanical loading of hPDL cells. When cells were mechanically stressed in the presence of TLR-4ab, the effect seen for loading alone was markedly reduced. Likewise, monocyte adhesion and osteoclastic differentiation were enhanced significantly by mechanical stress of hPDL cells and this effect was partially inhibited by TLR-4ab. CONCLUSIONS The results of the present study indicate a proinflammatory and immunomodulatory influence of mechanical loading on hPDL cells. Intracellular signaling involves a TLR-4-dependent pathway. CLINICAL RELEVANCE These findings hold out the prospect of interfering with the cellular response to mechanical cell stress in order to minimize undesired side effects of orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2018. J Oral Biosci 2019; 61:1-4. [PMID: 30929795 DOI: 10.1016/j.job.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge regarding every aspect of oral biosciences. HIGHLIGHT This editorial review features summaries of review articles in the fields of "Bone Biology," "Epigenomics," "Periodontium," and "Amelogenesis" in addition to review articles by winners of the Lion Dental Research Award ("Role of non-canonical Wnt signaling pathways in bone resorption," "Mechanisms of orofacial sensory processing in the rat insular cortex," and "Analysis of the mechanism in salivary gland development using gene database") and the Rising Members Award ("Synergistic findings from microbiological and evolutional analyses of virulence factors among pathogenic streptococcal species" and "Free fatty acids may be involved in the pathogenesis of oral-related and cardiovascular diseases"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews published in the Journal of Oral Biosciences have inspired the readers of the Journal to broaden their knowledge of various aspects in the oral biosciences. This editorial review summarizes these exciting articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
9
|
Marciniak J, Lossdörfer S, Kirschneck C, Deschner J, Jäger A, Wolf M. Heat shock protein 70 dampens the inflammatory response of human PDL cells to mechanical loading in vitro. J Periodontal Res 2019; 54:481-488. [PMID: 30865286 DOI: 10.1111/jre.12648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Previously, we demonstrated an inflammatory response of human PDL (hPDL) cells to mechanical loading. The cellular reaction was dampened by heat pre-treatment suggesting a protective role for heat shock proteins (HSP) during stress-induced ischemia. Here we explored if HSP70, which has already been documented in the pressure zone of tooth movement, might be regulatorily involved in the attenuation of the inflammatory response. MATERIALS AND METHODS Fifth passage hPDL cells were mechanically loaded in the presence of the HSP70 inhibitor VER155008. Cell morphology, HSP70 expression, viability, IL-6 and IL-8 expression were determined by means of microscopy, realtime-PCR and ELISA. The conditioned medium of mechanically loaded and pre-treated hPDL cells was used to culture monocytes to identify a potential impact on adhesion and osteoclastic differentiation capacity. RESULTS Mechanical cell stress resulted in a significant increase of pro-inflammatory parameters. HSP70 inhibition led to a further enhancement of cytokine expression. The conditioned medium of mechanically loaded hPDL cells significantly increased monocyte adhesion and differentiation along the osteoclastic pathway. VER155008 pronounced this effect significantly. CONCLUSION The results indicate a regulatory role for HSP70 in the control of the inflammatory hPDL cell response to mechanical loading and identify HSP70 as a target in the attempt to attenuate tissue damage during orthodontic tooth movement. Furthermore, the present findings point to the risk of increased periodontal destruction when medication targeting HSP70 is applied for severe medical conditions during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Christian Kirschneck
- Department of Orthodontics, Dental Clinic, University of Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Restorative Dentistry, University of Mainz, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany
| |
Collapse
|
10
|
Wolf M, Marciniak J, Lossdörfer S, Kirschneck C, Brauner I, Götz W, Jäger A. Role of HSP70 protein in human periodontal ligament cell function and physiology. Ann Anat 2018; 221:76-83. [PMID: 30253189 DOI: 10.1016/j.aanat.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Heat pre-treatment of mechanically loaded human periodontal ligament cells (hPDL) dampens the inflammatory cellular response, as evidenced by a reduced expression of pro-inflammatory cytokines, inhibition of monocyte adhesion and osteoclastic differentiation. These findings imply heat shock proteins (HSP) as cell protective molecules acting in the PDL that are up-regulated upon ischemia caused by mechanical loading. HSP70 and its inhibition by VER155008 as the active agent in several pharmaceuticals are established targets and strategies, respectively, in the treatment of neoproliferative diseases. However, the effect of both players on periodontal remodeling in unknown. Therefore, we analyzed the role of HSP70 and its frequently used inhibitor VER155008 in the regulation of physiological hPDL cell functions and immune cell interaction. MATERIALS AND METHODS Fifth passage hPDL cells were cultured in the presence of 25μm HSP70 inactivating agent VER155008. At harvest, HSP70 expression, cell proliferation, and parameters of cell interaction, colony formation and wound healing were analyzed by means of real-time PCR, immunohistochemistry, Western blot, biochemical MTS assay, microscopy, and functional assays for monocyte adhesion and differentiation. RESULTS Basal HSP70 expression and hPDL cell morphology were not affected by HSP70 inhibitor VER155008. In contrast, cell proliferation, tissue defect healing, and colony formation were reduced significantly following HSP70 inhibition, whereas apoptosis and necrosis, monocyte adhesion and osteoclastic differentiation were markedly increased. CONCLUSIONS The present data indicate a regulatory role for HSP70 protein in hPDL cell biology. CLINICAL RELEVANCE These findings identify HSP70 as a promising target in the attempt to modify periodontal remodeling and point to potential periodontal side effects of HSP70 pharmaceutical usage.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany.
| | - Jana Marciniak
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany; Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | | | - Isabel Brauner
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany
| | - Werner Götz
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| |
Collapse
|
11
|
|
12
|
Local delivery of HMGB1 in gelatin sponge scaffolds combined with mesenchymal stem cell sheets to accelerate fracture healing. Oncotarget 2018; 8:42098-42115. [PMID: 28431400 PMCID: PMC5522052 DOI: 10.18632/oncotarget.16887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023] Open
Abstract
Fracture nonunion and delayed union continue to pose challenges for orthopedic surgeons. In the present study, we combined HMGB1 gelatin sponges with MSC sheets to promote bone healing after surgical treatment of rat tibial fractures. The HMGB1 gelatin sponge scaffolds supported the expansion of mesenchymal stem cells (MSCs) and promoted the osteogenic differentiation of MSCs and MSC sheets. Lentiviral vectors were then used to overexpress HMGB1 in MSCs. The results indicated that HMGB1 promotes the osteogenic differentiation of MSCs through the STAT3 pathway. Both siRNA and a STAT3 inhibitor downregulated STAT3, further confirming that HMGB1 induces the osteogenic differentiation of MSCs partly via the STAT3 signal pathway. In a rat tibial osteotomy model, we demonstrated the ability of HMGB1 gelatin sponge scaffolds to increase bone formation. The addition of MSC sheets further enhanced fracture healing. These findings support the use of HMGB1-loaded gelatin sponge scaffolds combined with MSC sheets to enhance fracture healing after surgical intervention.
Collapse
|
13
|
Martinotti S, Patrone M, Manfredi M, Gosetti F, Pedrazzi M, Marengo E, Ranzato E. HMGB1 Osteo-Modulatory Action on Osteosarcoma SaOS-2 Cell Line: An Integrated Study From Biochemical and -Omics Approaches. J Cell Biochem 2016; 117:2559-69. [PMID: 27012556 DOI: 10.1002/jcb.25549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/22/2016] [Indexed: 01/10/2023]
Abstract
High mobility group box protein-1 (HMGB1) is released from cells under various pathological conditions and it plays a pivotal role as an alarmin signaling tissue damage. Little is known about the impact of HMGB1 in bone repair and remodeling. To this aim, we focused on HMGB1-induced effects on the in vitro osteoblast model SaOS-2. Cell proliferation was stimulated with a maximum at concentration of 2.5 nM, and such a dose also stimulated cell migration and scratch wound healing. We then characterized the modulatory effect of HMGB1 on bone biology, by using osteogenesis/mineralization assays, a PCR array, and the analysis of a series of osteogenic markers. We performed also a proteomic screening using SWATH-MS on SaOS-2 cell exposed to HMGB1 and we provide evidence for proteins modulated in HMGB1 exposed cells. Taken together, our data demonstrate that SaOS-2 cell proliferation, migration, and osteogenic differentiation were increased by HMGB1. We, therefore, propose that HMGB1 could be a potent bone-remodeling signal but the physiological meaning of this property remains to be more ascertained. J. Cell. Biochem. 117: 2559-2569, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy.
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Marcello Manfredi
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy.,Isalit srl, sede legale-via Bovio, 6, Novara; sede operativa-Politecnico di Torino, sede di Alessandria, viale Teresa Michel 5, Alessandria 15121, Italy
| | - Fabio Gosetti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES)-Biochemistry Section, University of Genova, Viale Benedetto XV 1, Genova 16132, Italy
| | - Emilio Marengo
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
14
|
The negative feedback regulation of microRNA-146a in human periodontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation. Inflamm Res 2015; 64:441-51. [DOI: 10.1007/s00011-015-0824-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 12/18/2022] Open
|