1
|
Kim H, An HJ, Park J, Lee Y, Kim MS, Lee S, Kim ND, Song J, Choi I. Ultrasensitive and real-time optical detection of cellular oxidative stress using graphene-covered tunable plasmonic interfaces. NANO CONVERGENCE 2022; 9:23. [PMID: 35604511 PMCID: PMC9127018 DOI: 10.1186/s40580-022-00315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Reactive oxygen species (ROS) regulate various physiological and pathological conditions in cells by interacting with signaling molecules and inducing oxidative stress. Therefore, sensitive monitoring of ROS levels in living cells is important to track cellular state and study the complex role of ROS in the development of various pathologies. Herein, we present an optically tunable plasmonic interface covered with graphene to monitor cellular ROS levels with superior sensitivity and cellular comfortability. As a sensing principle, we employed plasmon resonance energy transfer (PRET)-based spectral quenching dips modulated by redox-active cytochrome c for real-time monitoring. By transferring graphene layers to plasmonic nanoparticles immobilized on a glass substrate, the scattering profiles of the nanoprobes were adjusted in terms of the position, width, and intensity of the peaks to determine the optimal conditions for measuring the PRET signal. Using the optimized graphene-covered plasmonic nanoprobe, we obtained calibration curves over a wide concentration range from femtomoles to millimoles for hydrogen peroxide based on the change in the PRET signal. Before monitoring cellular ROS, we confirmed that a high density of cells adhered well to the graphene-covered plasmonic interface by observing immunofluorescence images of the cytoskeleton of the immobilized cells. Finally, we monitored the real-time ROS generated by the cells under oxidative stress conditions by directly measuring the spectral changes of the probes around the cells. We believe that the proposed graphene-covered tunable plasmonic interface has versatile applicability for investigating cellular stress and disease progression by monitoring ROS levels under various cellular conditions.
Collapse
Affiliation(s)
- Hakchun Kim
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Yohan Lee
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Min Seob Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Nam Dong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea.
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea.
| |
Collapse
|
2
|
Photolon Nanoporous Photoactive Material with Antibacterial Activity and Label-Free Noncontact Method for Free Radical Detection. Int J Mol Sci 2021; 23:ijms23010279. [PMID: 35008705 PMCID: PMC8745701 DOI: 10.3390/ijms23010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The worldwide increase in bacterial resistance and healthcare-associated bacterial infections pose a serious threat to human health. The antimicrobial photodynamic method reveals the opportunity for a new therapeutic approach that is based on the limited delivery of photosensitizer from the material surface. Nanoporous inorganic–organic composites were obtained by entrapment of photosensitizer Photolon in polysiloxanes that was prepared by the sol–gel method. The material was characterized by its porosity, optical properties (fluorescence and absorbance), and laser-induced antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The permanent encapsulation of Photolon in the silica coating and the antimicrobial efficiency was confirmed by confocal microscope and digital holotomography. The generation of free radicals from nanoporous surfaces was proved by scanning Kelvin probe microscopy. For the first time, it was confirmed that Kelvin probe microscopy can be a label-free, noncontact alternative to other conventional methods based on fluorescence or chemiluminescence probes, etc. It was confirmed that the proposed photoactive coating enables the antibacterial photodynamic effect based on free radicals released from the surface of the coating. The highest bactericidal efficiency of the proposed coating was 87.16%. This coating can selectively limit the multiplication of bacterial cells, while protecting the environment and reducing the risk of surface contamination.
Collapse
|
3
|
Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish Its Relationship with Antioxidants and Cancer. Antioxidants (Basel) 2021; 10:antiox10010128. [PMID: 33477494 PMCID: PMC7831054 DOI: 10.3390/antiox10010128] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that reactive oxygen species (ROS) mediate tissue homeostasis, cellular signaling, differentiation, and survival. ROS and antioxidants exert both beneficial and harmful effects on cancer. ROS at different concentrations exhibit different functions. This creates necessity to understand the relation between ROS, antioxidants, and cancer, and methods for detection of ROS. This review highlights various sources and types of ROS, their tumorigenic and tumor prevention effects; types of antioxidants, their tumorigenic and tumor prevention effects; and abnormal ROS detoxification in cancer; and methods to measure ROS. We conclude that improving genetic screening methods and bringing higher clarity in determination of enzymatic pathways and scale-up in cancer models profiling, using omics technology, would support in-depth understanding of antioxidant pathways and ROS complexities. Although numerous methods for ROS detection are developing very rapidly, yet further modifications are required to minimize the limitations associated with currently available methods.
Collapse
|