1
|
Superparamagnetic Iron Oxide-Labeled Leishmania major Can Be Traced in Fibroblasts. J Parasitol Res 2023; 2023:7628912. [PMID: 36643716 PMCID: PMC9833902 DOI: 10.1155/2023/7628912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Leishmaniasis is still a neglected tropical disease that can endanger more than 350 million people among 98 countries. Leishmania can survive in fibroblasts as latent inactive forms. This study was conducted to evaluate the role of superparamagnetic iron oxide nanoparticles (SPIONs) in cell culture for tracking the labeled Leishmania major in fibroblasts. Methods Dextran-coated SPIONs were used for labeling L. major in co-culture of fibroblasts with the parasite. To quantify and trace SPION-labeled Leishmania, Prussian blue staining was undertaken. Fibroblast characterization was undertaken by real time polymerase chain reaction. Transmission electron microscope (TEM) was used for confirming the entry of the labeled L. major to the cytoplasm and the nucleus of the fibroblast. Results Fibroblasts were spindle-shaped and adherent to culture flasks. Promastigotes were with thin elongated lance-like morphology with an anterior kinetoplast and an emergent free flagellum. Prussian blue staining revealed that internalized SPIONs were localized within cytoplasm and nucleus of the fibroblasts after 24 hours of culture. Prussian blue staining successfully showed the presence of iron (stained blue) in labeled L. major within the fibroblasts. This finding was confirmed by TEM, and labeled L. major was detected in the fibroblast cytoplasm and nucleus too. Conclusion We can conclude that SPIONs are safe, inexpensive, easy to use, and accurate, and a fast method to label Leishmania parasite in cells that the parasite can be latent, such as fibroblasts. These findings can open a new window in diagnosis, pathogenesis, and treatment of cutaneous leishmaniasis and can be added to the literature.
Collapse
|
2
|
Ilonze C, Anderson M, Stubblefield A, Journeycake J, Sinha AA. Use of infusion ports in patients with sickle cell disease: Indications and complications. Pediatr Blood Cancer 2022; 69:e29445. [PMID: 34786823 DOI: 10.1002/pbc.29445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Peripheral venous access in patients with sickle cell disease (SCD) can become difficult over time due to frequent access and scarring. Infusion ports provide reliable central venous access. Deep venous thrombosis (DVT) and infections are complications associated with SCD and infusion ports. METHODS We performed a 17.5-year single-institution retrospective chart review (January 2000 to July 2018) with literature review regarding use of infusion ports in patients with SCD. RESULTS We identified 32 patients with infusion ports placed for a total of 63 devices (48 for chronic transfusion [CT] and 15 for poor venous access [PVA], not on CT) for a total of 99,272 catheter days. The mean age at first insertion was 8 years (range 1-20 years). Complications included malfunction, infection, thrombosis, difficult access, and pain over infusion port site. The rate of infection was 0.2 per 1000 catheter days. Thrombosis was identified in three devices (5%) in three patients (9%), with a rate of 0.03 per 1000 catheter days. There was no difference in complications by site in either the left or right subclavian vein (p = 1). The rate of premature removal was 0.36 per 1000 catheter days, which was higher among patients with infusion ports solely for PVA (0.87 per 1000 catheter days) compared with those placed for CT (0.29 per 1000 catheter days). CONCLUSION Infusion ports in patients with SCD was associated with low rates of thrombosis, infection, and malfunction, and may be considered as an alternative to frequent intravenous access, especially in patients requiring CT.
Collapse
Affiliation(s)
- Chibuzo Ilonze
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Jimmy Everest Section of Pediatric Hematology Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael Anderson
- Department of Epidemiology & Biostatistics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alex Stubblefield
- Department of Epidemiology & Biostatistics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Economics, Michigan State University, East Lansing, Michigan, USA
| | - Janna Journeycake
- Jimmy Everest Section of Pediatric Hematology Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Arpan A Sinha
- Jimmy Everest Section of Pediatric Hematology Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Bezerra OCDL, Alvarado-Arnez LE, Mabunda N, Salomé G, de Sousa A, Kehdy FDSG, Sales-Marques C, Manta FSDN, Andrade RM, Ferreira LP, Leal-Calvo T, Cardoso CC, Nunes K, Gouveia MH, Mbulaiteve SM, Yeboah ED, Hsing A, Latini ACP, Leturiondo AL, Rodrigues FDC, Noronha AB, Ferreira CDO, Talhari C, Rêgo JL, Castellucci LCDC, Tarazona-Santos E, de Carvalho EF, Meyer D, Pinheiro RO, Jani IV, Pacheco AG, Moraes MO. Putative pathogen-selected polymorphisms in the PKLR gene are associated with mycobacterial susceptibility in Brazilian and African populations. PLoS Negl Trop Dis 2021; 15:e0009434. [PMID: 34449765 PMCID: PMC8396769 DOI: 10.1371/journal.pntd.0009434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Pyruvate kinase (PK), encoded by the PKLR gene, is a key player in glycolysis controlling the integrity of erythrocytes. Due to Plasmodium selection, mutations for PK deficiency, which leads to hemolytic anemia, are associated with resistance to malaria in sub-Saharan Africa and with susceptibility to intracellular pathogens in experimental models. In this case-control study, we enrolled 4,555 individuals and investigated whether PKLR single nucleotide polymorphisms (SNPs) putatively selected for malaria resistance are associated with susceptibility to leprosy across Brazil (Manaus-North; Salvador-Northeast; Rondonópolis-Midwest and Rio de Janeiro-Southeast) and with tuberculosis in Mozambique. Haplotype T/G/G (rs1052176/rs4971072/rs11264359) was associated with leprosy susceptibility in Rio de Janeiro (OR = 2.46, p = 0.00001) and Salvador (OR = 1.57, p = 0.04), and with tuberculosis in Mozambique (OR = 1.52, p = 0.07). This haplotype downregulates PKLR expression in nerve and skin, accordingly to GTEx, and might subtly modulate ferritin and haptoglobin levels in serum. Furthermore, we observed genetic signatures of positive selection in the HCN3 gene (xpEHH>2 -recent selection) in Europe but not in Africa, involving 6 SNPs which are PKLR/HCN3 eQTLs. However, this evidence was not corroborated by the other tests (FST, Tajima's D and iHS). Altogether, we provide evidence that a common PKLR locus in Africans contribute to mycobacterial susceptibility in African descent populations and also highlight, for first, PKLR as a susceptibility gene for leprosy and TB.
Collapse
Affiliation(s)
| | - Lucia Elena Alvarado-Arnez
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- National Research Coordination, Franz Tamayo University (UNIFRAZ), Cochabamba, Bolivia
| | - Nédio Mabunda
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Graça Salomé
- Medical Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Amina de Sousa
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Carolinne Sales-Marques
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Cellular Biology and Genetics, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | | | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Nunes
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sam M. Mbulaiteve
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ann Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | | - Carolina Talhari
- Laboratory of Molecular Biology, Alfredo da Matta Foundation, Manaus, Brazil
| | - Jamile Leão Rêgo
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Tarazona-Santos
- Departament of Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Diogo Meyer
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ilesh V. Jani
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | | |
Collapse
|
5
|
Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med 2016; 5:15. [PMID: 27056246 PMCID: PMC4824700 DOI: 10.1186/s40169-016-0092-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background The major therapeutic benefit of hydroxyurea, the only FDA-approved pharmacologic treatment for sickle cell disease (SCD), is directly related to fetal hemoglobin (HbF) production that leads to significant reduction of morbidity and mortality. However, potential adverse effects such as infertility, susceptibility to infections, or teratogenic effect have been subject of concerns. Therefore, understanding HU molecular mechanisms of action, could lead to alternative therapeutic agents to increase HbF with less toxicity. This paper investigated whether HU-induced HbF could operate through post-transcriptional miRNAs regulation of BCL11A, KLF-1 and MYB, potent negative regulators of HbF. Both ex vivo differentiated primary erythroid cells from seven unrelated individuals, and K562 cells were treated with hydroxyurea (100 μM) and changes in BCL11A, KLF-1, GATA-1, MYB, β- and γ-globin gene expression were investigated. To explore potential mechanisms of post-transcriptional regulation, changes in expression of seven targeted miRNAs, previously associated with basal γ-globin expression were examined using miScript primer assays. In addition, K562 cells were transfected with miScript miRNA inhibitors/anti-miRNAs followed by Western Blot analysis to assess the effect on HbF protein levels. Direct interaction between miRNAs and the MYB 3′-untranslated region (UTR) was also investigated by a dual-luciferase reporter assays. Results Down-regulation of BCL11A and MYB was associated with a sevenfold increase in γ-globin expression in both primary and K562 cells (p < 0.003). Similarly, KLF-1 was down-regulated in both cell models, corresponding to the repressed expression of BCL11A and β-globin gene (p < 0.04). HU induced differential expression of all miRNAs in both cell models, particularly miR-15a, miR-16, miR-26b and miR-151-3p. An HU-induced miRNAs-mediated mechanism of HbF regulation was illustrated with the inhibition of miR-26b and -151-3p resulting in reduced HbF protein levels. There was direct interaction between miR-26b with the MYB 3′-untranslated region (UTR). Conclusions These experiments have shown the association between critical regulators of γ-globin expression (MYB, BCL11A and KLF-1) and specific miRNAs; in response to HU, and demonstrated a mechanism of HbF production through HU-induced miRNAs inhibition of MYB. The role of miRNAs-mediated post-transcriptional regulation of HbF provides potential targets for new treatments of SCD that may minimize alterations to the cellular transcriptome. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0092-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gift Dineo Pule
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa
| | - Shaheen Mowla
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Nicolas Novitzky
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa.
| |
Collapse
|
6
|
Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol 2015; 8:669-79. [PMID: 26327494 DOI: 10.1586/17474086.2015.1078235] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. STUDY DESIGN Systematic review. RESULTS Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). CONCLUSIONS The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.
Collapse
Affiliation(s)
- Gift D Pule
- a 1 Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | | | | | | | | |
Collapse
|