1
|
Rivera-Rivas LA, Arroyo R. Iron restriction increases the expression of a cytotoxic cysteine proteinase TvCP2 by a novel mechanism of tvcp2 mRNA alternative polyadenylation in Trichomonas vaginalis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194935. [PMID: 37011833 DOI: 10.1016/j.bbagrm.2023.194935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
Trichomonas vaginalis TvCP2 (TVAG_057000) is a cytotoxic cysteine proteinase (CP) expressed under iron-limited conditions. This work aimed to identify one of the mechanisms of tvcp2 gene expression regulation by iron at the posttranscriptional level. We checked tvcp2 mRNA stability under both iron-restricted (IR) and high iron (HI) conditions in the presence of actinomycin D. Greater stability of the tvcp2 mRNA under the IR than in HI conditions was observed, as expected. In silico analysis of the 3' regulatory region showed the presence of two putative polyadenylation signals in the tvcp2 transcript. By 3'-RACE assays, we demonstrated the existence of two isoforms of the tvcp2 mRNA with different 3'-UTR that resulted in more TvCP2 protein under IR than in HI conditions detected by WB assays. Additionally, we searched for homologs of the trichomonad polyadenylation machinery by an in silico analysis in the genome database, TrichDB. 16 genes that encode proteins that could be part of the trichomonad polyadenylation machinery were found. qRT-PCR assays showed that most of these genes were positively regulated by iron. Thus, our results show the presence of alternative polyadenylation as a novel iron posttranscriptional regulatory mechanism in T. vaginalis for the tvcp2 gene expression.
Collapse
Affiliation(s)
- Luis Alberto Rivera-Rivas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
2
|
Plata-Guzmán LY, Arroyo R, León-Sicairos N, Canizález-Román A, López-Moreno HS, Chávez-Ontiveros J, Garzón-Tiznado JA, León-Sicairos C. Stem-Loop Structures in Iron-Regulated mRNAs of Giardia duodenalis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3556. [PMID: 36834255 PMCID: PMC9966554 DOI: 10.3390/ijerph20043556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/14/2023]
Abstract
Giardia duodenalis is a significant cause of waterborne and foodborne infections, day-care center outbreaks, and traveler's diarrhea worldwide. In protozoa such as Trichomonas vaginalis and Entamoeba histolytica, iron affects the growth, pathogenicity mechanisms, and expression of virulence genes. One of the proposed iron regulatory mechanisms is at the post-transcriptional level through an IRE/IRP-like (iron responsive element/iron regulatory protein) system. Recently, the expression of many putative giardial virulence factors in the free-iron levels has been reported in subsequent RNAseq experiments; however, the iron regulatory mechanism remains unknown. Thus, this work aimed to determine the effects of iron on the growth, gene expression, and presence of IRE-like structures in G. duodenalis. First, the parasite's growth kinetics at different iron concentrations were studied, and the cell viability was determined. It was observed that the parasite can adapt to an iron range from 7.7 to 500 µM; however, in conditions without iron, it is unable to survive in the culture medium. Additionally, the iron modulation of three genes was determined by RT-PCR assays. The results suggested that Actin, glucosamine-6-phosphate deaminase, and cytochrome b5 mRNA were down-regulated by iron. To investigate the presence of IRE-like structures, in silico analyses were performed for different mRNAs from the Giardia genome database. The Zuker mfold v2.4 web server and theoretical analysis were used to predict the secondary structures of the 91 mRNAs analyzed. Interestingly, the iron-induced downregulation of the genes analyzed corresponds to the location of the stem-loop structures found in their UTR regions. In conclusion, iron modulates the growth and expression of specific genes, likely due to the presence of IRE-like structures in G. duodenalis mRNAs.
Collapse
Affiliation(s)
- Laura Y. Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria), Culiacán 80030, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN No. 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Nidia León-Sicairos
- CIASaP Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces Frac. Fresnos, Culiacán 80246, Mexico
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacán 80200, Mexico
| | - Adrián Canizález-Román
- CIASaP Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces Frac. Fresnos, Culiacán 80246, Mexico
| | - Héctor S. López-Moreno
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria), Culiacán 80030, Mexico
| | - Jeanett Chávez-Ontiveros
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria), Culiacán 80030, Mexico
| | - José A. Garzón-Tiznado
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria), Culiacán 80030, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria), Culiacán 80030, Mexico
| |
Collapse
|
3
|
Ren JY, Yin BW, Li X, Zhu SQ, Deng JL, Sun YT, Zhang ZA, Guo ZH, Pei HT, Zhang F, Li RQ, Chen FG, Ma YX. Sesamin attenuates PM 2.5-induced cardiovascular injury by inhibiting ferroptosis in rats. Food Funct 2021; 12:12671-12682. [PMID: 34825691 DOI: 10.1039/d1fo02913d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: This study aimed to elucidate the pharmacological effects of sesamin (Ses) and its mechanism of action towards PM2.5-induced cardiovascular injuries. Method: Forty Sprague Dawley (SD) rats were randomly divided into five groups: a saline control group; a PM2.5 exposure group; and low-, middle-, and high-dose Ses pretreatment groups. The SD rats were pretreated with different concentrations of Ses for 21 days. Afterward, the rats were exposed to ambient PM2.5 by intratracheal instillation every other day for a total of three times. The levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6), and indicators related to oxidative responses, such as total superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), were measured in the blood and heart. The expression of ferroptosis-related proteins in heart tissues was determined via western blot and immunohistochemistry. Results: Ses pretreatment substantially ameliorated cardiovascular injuries in rats as evidenced by the decrease in the pathological score and collagen area. The decreased levels of SOD, GSH, and GSH-Px in the heart and serum were inhibited by Ses. In addition, Ses not only notably increased the activity of antioxidant enzymes but also reduced the levels of MDA, CK, LDH, CK-MB, IL-6, TNF-α, IL-1β, and IL-6. Furthermore, Ses pretreatment upregulated the expression levels of GPX4, SLC7A11, TFRC, and FPN1 and inhibited the expression levels of FTH1 and FTL. Conclusion: Ses pretreatment could ameliorate PM2.5-induced cardiovascular injuries perhaps by inhibiting ferroptosis. Therefore, Ses pretreatment may be a novel strategy for the prevention and treatment of PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Bo-Wen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Qi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jin-Liang Deng
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi-Ting Sun
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen-Ao Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Hao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huan-Ting Pei
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui-Qiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Feng-Ge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yu-Xia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Soto-Castro L, Plata-Guzmán LY, Figueroa-Angulo EE, Calla-Choque JS, Reyes-López M, de la Garza M, León-Sicairos N, Garzón-Tiznado JA, Arroyo R, León-Sicairos C. Iron responsive-like elements in the parasite Entamoeba histolytica. Microbiology (Reading) 2017; 163:1329-1342. [DOI: 10.1099/mic.0.000431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liliana Soto-Castro
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Laura Yuliana Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Jaeson Santos Calla-Choque
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Nidia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - José Antonio Garzón-Tiznado
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| |
Collapse
|
5
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
6
|
Abstract
Northwestern assays detect a direct binding of a given RNA molecule to a protein immobilized on a nitrocellulose membrane. Here, we describe protocols to prepare (32)P-labeled RNA probes and to use them to assay for RNA-protein interactions after partially purified protein preparations are resolved on denaturing SDS-polyacrylamide gels. The method can unambiguously determine whether the protein of interest can directly and independently bind RNA even in the presence of contaminating bacterial proteins or degradation products that at times may hinder interpretation of results obtained from gel mobility shift or RNP immunoprecipitation assays.
Collapse
|
7
|
Corrigendum to " α-Actinin TvACTN3 of Trichomonas vaginalis Is an RNA-Binding Protein That Could Participate in Its Posttranscriptional Iron Regulatory Mechanism". BIOMED RESEARCH INTERNATIONAL 2016; 2016:2676598. [PMID: 27517042 PMCID: PMC4969500 DOI: 10.1155/2016/2676598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022]
|
8
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
9
|
dos Santos O, de Vargas Rigo G, Frasson AP, Macedo AJ, Tasca T. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis. PLoS One 2015; 10:e0138331. [PMID: 26393928 PMCID: PMC4579074 DOI: 10.1371/journal.pone.0138331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.
Collapse
Affiliation(s)
- Odelta dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Amanda Piccoli Frasson
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
10
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|