1
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
2
|
Legorreta-Castañeda AJ, Guerra-Sánchez G, García-Gutiérrez K, Olicón-Hernández DR. Biotechnological insights into extracellular enzyme production by thermotolerant fungi from hot springs and caves: Morphology, pellets formation, and protease production. Biotechnol Appl Biochem 2024; 71:536-552. [PMID: 38225871 DOI: 10.1002/bab.2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
This study investigates the thermotolerant fungal biodiversity in caves and hot springs, focusing on their potential for extracellular enzyme production, specifically proteases. Samples were collected from the Cardonal region in Hidalgo, Mexico, using three different isolation methods. The study characterizes the morphological diversity of the isolated fungi and identifies various genera, including Aspergillus, Penicillium, Trichoderma, Cladosporium, and Fusarium, based on morphology. The isolated fungi were screened for their ability to produce extracellular enzymes on solid media, with a particular emphasis on proteases due to their industrial significance. Among the 35 isolated fungi, 20 exhibited proteolytic activity, and 12 strains were identified as good protease producers based on enzymatic index values. The study also evaluated the formation of fungal pellets by proteolytic fungi and found certain strains to display significant pellet formation. Additionally, protease production was examined by fungal pellets in submerged cultures, with isolate 6 demonstrating the highest protease activity. The findings highlight the diverse thermotolerant fungal biodiversity in extreme environments, and emphasize their potential for enzymatic production. This research contributes to our understanding of fungal ecology and provides insights into the biotechnological applications of these enzymes. The study recommends further molecular investigations to enhance biodiversity studies in such extreme environments.
Collapse
Affiliation(s)
- Adriana Jazmín Legorreta-Castañeda
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Karina García-Gutiérrez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Dario Rafael Olicón-Hernández
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
3
|
Sidhoum W, Dib S, Alim Y, Anseur S, Benlatreche S, Belaidouni ZM, Chamouma FEZ. Growth-promoting effects of Aspergillus Elegans and the dark septate endophyte (DSE) Periconia macrospinosa on cucumber. Arch Microbiol 2024; 206:226. [PMID: 38642120 DOI: 10.1007/s00203-024-03958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Cucurbits are subject to a variety of stresses that limit their sustainable production, despite their important role in ensuring food security and nutrition. Plant stress tolerance can be enhanced through fungal endophytes. In this study, two endophytes isolated from wild plant roots, were tested to determine their effect on the growth promotion of cucumber (Cucumis sativus L.) plants. The phylogenetic analysis revealed that the designated isolates were Aspergillus elegans and Periconia macrospinosa. The results of the Plant Growth Promoting Fungal (PGPF) tests showed that both Aspergillus elegans and Periconia macrospinosa have a zinc solubilizing capacity, especially A. elegans, with a solubilization index higher than 80%. Also, both have a high salt tolerance (10-15% NaCl for P. macrospinosa and A. elegans, respectively), cellulolytic activity, and inhibition indices of 40-64.53%. A. elegans and P. macrospinosa had antagonistic effects against the cucumber phytopathogenic fungi Verticillium dahliae and Fusarium oxysporum, respectively. However, A. elegans and P. macrospinosa didn't exhibit certain potential plant benefits, such as the production of hydrogen cyanide (HCN) and phosphate solubilization. The chlorophyll content and growth parameters of two-month-old cucumber plants inoculated with the fungal species were significantly better than those of the controls (non-inoculated); the shoot dry weights of inoculated plants were increased by 138% and 170% for A. elegans and P. macrospinosa, respectively; and the root colonization by fungal endophytes has also been demonstrated. In addition to the fact that P. macrospinosa has long been known as PGPF, this is the first time that the ability of A. elegans to modulate host plant growth has been demonstrated, with the potential to be used as a biofertilizer in sustainable agriculture.
Collapse
Affiliation(s)
- Warda Sidhoum
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie.
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie.
| | - Soulef Dib
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Yousra Alim
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sarra Anseur
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sabrina Benlatreche
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | | | - Fatiha El Zahra Chamouma
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie
| |
Collapse
|
4
|
Ben Hmad I, Gargouri A. Halophilic filamentous fungi and their enzymes: Potential biotechnological applications. J Biotechnol 2024; 381:11-18. [PMID: 38159888 DOI: 10.1016/j.jbiotec.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Recently, interest in the study of microorganisms growing under extreme conditions, particularly halophiles, has increased due to their potential use in industrial processes. Halophiles are the class of microorganisms that grow optimally at high NaCl concentrations and are capable of producing halophilic enzymes capable of catalyzing reactions under harsh conditions. So far, fungi are the least studied halophilic microorganisms, even though they have been shown to counteract these extreme conditions by producing secondary metabolites with very interesting properties. This review highlights mechanisms that allow halophilic fungi to adapt high salinity and the specificity of their enzymes to a spectrum of action in industrial and environmental applications. The peculiarities of these enzymes justify the urgent need to apply green alternative compounds in industries.
Collapse
Affiliation(s)
- Ines Ben Hmad
- Laboratory of Molecular Biology of Eukaryotes, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", Sfax 3018, Tunisia.
| | - Ali Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", Sfax 3018, Tunisia
| |
Collapse
|
5
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
6
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Boucherit Z, Flahaut S, Djoudi B, Mouas TN, Mechakra A, Ameddah S. Potential of Halophilic Penicillium chrysogenum Isolated from Algerian Saline Soil to Produce Laccase on Olive Oil Wastes. Curr Microbiol 2022; 79:178. [PMID: 35488945 DOI: 10.1007/s00284-022-02868-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
Enzymes from halophilic fungi offer interesting biotechnological applications, which lead us to explore novel producing strains. 23 fungi were isolated from Algerian saline soil. Among the three strains presenting laccase activities, one exhibited the high decolourising capacity of olive mill wastewaters. Identification showed that the efficient isolate GS15 belongs to Penicillium chrysogenum. This strain achieves optimal growth at 15% NaCl, 25 °C, pH 5, dark, aerobic and static conditions. The selected fungus is capable of producing extracellular enzymes as follows: caseinase, tannase, esterase and lipase. The laccase activities produced by P. chrysogenum on raw olive wastes are being reported here for the first time. GS15 produced 183.0 and 203.0 U/L of laccase activities in 10% and 20% unsupplemented olive mill wastewaters, respectively. The significant enzymatic activities can be correlated to the high ability of GS15 to decolourise industrial wastewater from the olive oil extraction. In these conditions no pre-treatment of olive wastewaters was needed. On the untreated grinded and non-grinded olive pomace, the laccase activity was 5.78 U/g and 5.36 U/g, respectively. Because the halophilic fungus has basic requirement for growth, this fungal strain is promising for saline biotechnological applications.
Collapse
Affiliation(s)
- Zeyneb Boucherit
- Laboratoire d'Obtention des Substances Thérapeutiques, Université des Frères Mentouri Constantine 1 (UFMC1), Campus Chaabet Ersas, 25000, Constantine, Algeria.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Campus du CERIA, 1070, Brussels, Belgium
| | - Brahim Djoudi
- Laboratoire d'Informatique Repartie, Université Abdelhamid Mehri Constantine 2 (UC2AM), 25000, Constantine, Algeria
| | - Toma-Nardjes Mouas
- Laboratoire d'Obtention des Substances Thérapeutiques, Université des Frères Mentouri Constantine 1 (UFMC1), Campus Chaabet Ersas, 25000, Constantine, Algeria
| | - Aicha Mechakra
- Laboratoire de Biologie et Environnement, Université des Frères Mentouri Constantine 1 (UFMC1), 25000, Constantine, Algeria
| | - Souad Ameddah
- Laboratoire de Biologie et Environnement, Université des Frères Mentouri Constantine 1 (UFMC1), 25000, Constantine, Algeria
| |
Collapse
|
8
|
Ebrahim W, Ebada SS. Antimicrobial Metabolites from Extremophilic Fungus Botryotrichum piluliferum Strain WESH19. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03443-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Czachura P, Owczarek-Kościelniak M, Piątek M. Salinomyces polonicus: A moderately halophilic kin of the most extremely halotolerant fungus Hortaea werneckii. Fungal Biol 2021; 125:459-468. [PMID: 34024593 DOI: 10.1016/j.funbio.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
A clade where the most halotolerant fungus in the world - Hortaea werneckii, belongs (hereafter referred to as Hortaea werneckii lineage) includes five species: Hortaea werneckii, H. thailandica, Stenella araguata, Eupenidiella venezuelensis, and Magnuscella marina, of which the first species attracts increasing attention of mycologists. The species diversity and phylogenetic relationships within this lineage are weakly known. In this study two moderately halophilic black yeast strains were isolated from brine of graduation tower in Poland. Molecular phylogenetic analyses based on the rDNA ITS1-5.8S-ITS2 (=ITS), rDNA 28S D1-D2 (=LSU), and RNA polymerase II (rpb2) sequences showed that the two strains belong to Hortaea werneckii lineage but cannot be assigned to any described taxa. Accordingly, a new genus and species, Salinomyces and Salinomyces polonicus, are described for this fungus. Furthermore, molecular phylogenetic analyses have revealed that Hortaea thailandica is more closely related to S. polonicus than to H. werneckii. A new combination Salinomyces thailandicus is proposed for this fungus.
Collapse
Affiliation(s)
- Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512, Kraków, Poland.
| | | | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512, Kraków, Poland.
| |
Collapse
|
10
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Microbial Diversity of Some Sabkha and Desert Sites in Saudi Arabia. Saudi J Biol Sci 2020; 27:2778-2789. [PMID: 32994737 PMCID: PMC7499299 DOI: 10.1016/j.sjbs.2020.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies isolated fungal and bacterial species from extreme environments, such as Sabkha and hot deserts, as their natural habitat, some of which are of medicinal importance. Current research aimed investigating the microbial (fungi and bacteria) diversity and abundance in Sabkha and desert areas in Saudi Arabia. Soil samples from nine different geographical areas (Al-Aushazia lake, AlQasab, AlKasar, Tabuk, Al-Kharj, Al-Madina, Jubail, Taif and Abqaiq) were collected and cultured for microbial isolation. Isolated fungi and bacteria were identified by molecular techniques (PCR and sequencing). Based on 18S rDNA sequencing, 203 fungal species belonging to 33 genera were identified. The most common fungal genera were Fusarium, Alternaria, Chaetomium, Aspergillus Cochliobolus and Pencillium, while the most common species were Chaetomium globosum and Fusarium oxysporum. By 16S rDNA sequencing 22 bacterial species belonging to only two genera, Bacillus and Lactobacillus, were identified. The most commonly isolated bacterial species were Bacillus subtilis and Lactobacillus murinus. Some fungal species were confined to specific locations, such as Actinomyces elegans, Fusarium proliferatum, Gymnoascus reesii and Myzostoma spp. that were only isolated from Al-Aushazia soil. AlQasab soil had the highest microbial diversity among other areas with abundances of 23.5% and 4.4% of total fungi, and bacteria, respectively. Findings of this study show a higher degree of fungal diversity than that of bacteria in all studied areas. Further studies needed to investigate the connection between some isolated species and their habitat ecology, as well as to identify those of medicinal importance.
Collapse
|
12
|
Zhang Y, Tian P, Duan G, Gao F, Schnabel G, Zhan J, Chen F. Histone H3 gene is not a suitable marker to distinguish Alternaria tenuissima from A. alternata affecting potato. PLoS One 2020; 15:e0231961. [PMID: 32324785 PMCID: PMC7179870 DOI: 10.1371/journal.pone.0231961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Potato Alternaria leaf blight is one of the economically most important disease in potato production worldwide. A recent study reported a quick method to distinguish main Alternaria pathogens A. tenuissima, A. alternata, and A. solani using partial histone H3 gene sequences. Using this method, our collection of 79 isolates from 8 provinces in China were presumably separated into A. tenussima and A. alternata. But in depth morphological and genetic analysis casted doubt on this identification. Culture morphologies of six presumed A. alternata isolates (PresA_alt) and six presumed A. tenuissima isolates (PresA_ten) were not significantly different. PresA_ten isolates also produced conidia in branched chains which supposed to be A. aternata. Phylogenetic analyses were conducted using internal transcribed spacer region (ITS) and five genes commonly used for species identification including glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor 1-alpha (TEF1), β-tubulin, plasma membrane ATPase (ATPase), and calmodulin genes. The results showed that GPDH and TEF1 sequences of PresA_alt and PresA_ten isolates were identical. The 12 isolates did not cluster by presumed species neither by individual or concatenated sequence comparisons. The phylogeny–trait association analysis confirmed that the two group isolates were undistinguishable by those molecular markers. Analysis of histone H3 gene sequences revealed variable intron sequences between PresA_ten and PresA_alt isolates, but the amino acid sequences were identical. Our results indicate that the previously published method to distinguish Alternaria species based on histone H3 gene sequence variation is inaccurate and that the prevalence of A. tenuissima isolates in China was likely overestimated.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States of America
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| |
Collapse
|
13
|
Chamekh R, Deniel F, Donot C, Jany JL, Nodet P, Belabid L. Isolation, Identification and Enzymatic Activity of Halotolerant and Halophilic Fungi from the Great Sebkha of Oran in Northwestern of Algeria. MYCOBIOLOGY 2019; 47:230-241. [PMID: 31448143 PMCID: PMC6691801 DOI: 10.1080/12298093.2019.1623979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The Great Sebkha of Oran is a closed depression located in northwestern of Algeria. Despite the ranking of this sebkha among the wetlands of global importance by Ramsar Convention in 2002, no studies on the fungal community in this area have been carried out. In our study, samples were collected from two different regions. The first region is characterized by halophilic vegetation and cereal crops and the second by a total absence of vegetation. The isolated strains were identified morphologically then by molecular analysis. The biotechnological interest of the strains was evaluated by testing their ability to grow at different concentration of NaCl and to produce extracellular enzymes (i.e., lipase, amylase, protease, and cellulase) on solid medium. The results showed that the soil of sebkha is alkaline, with the exception of the soil of cereal crops that is neutral, and extremely saline. In this work, the species Gymnoascus halophilus, Trichoderma gamsii, the two phytopathogenic fungi, Fusarium brachygibbosum and Penicillium allii, and the teleomorphic form of P. longicatenatum observed for the first time in this species, were isolated for the first time in Algeria. The halotolerance test revealed that the majority of the isolated are halotolerant. Wallemia sp. and two strains of G. halophilus are the only obligate halophilic strains. All strains are capable to secrete at least one of the four tested enzymes. The most interesting species presenting the highest enzymatic index were Aspergillus sp. strain A4, Chaetomium sp. strain H1, P. vinaceum, G. halophilus, Wallemia sp. and Ustilago cynodontis.
Collapse
Affiliation(s)
- Rajaa Chamekh
- Faculty of Science of Nature and Life, Laboratory Research on Biological Systems and Geomatics, Mascara University, Mascara, Algeria
| | - Franck Deniel
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, EA3882, Université de Brest, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Christelle Donot
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, EA3882, Université de Brest, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, EA3882, Université de Brest, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Patrice Nodet
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, EA3882, Université de Brest, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Lakhder Belabid
- Faculty of Science of Nature and Life, Laboratory Research on Biological Systems and Geomatics, Mascara University, Mascara, Algeria
| |
Collapse
|
14
|
The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerance to salt, alkali and heat: prospects for straw degradation applications. Extremophiles 2018; 22:675-685. [DOI: 10.1007/s00792-018-1028-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
|
15
|
Doggui R, El Ati-Hellal M, Traissac P, El Ati J. Unsatisfactory results of the Tunisian universal salt iodization program on national iodine levels. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC. The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:310-318. [PMID: 27788446 DOI: 10.1016/j.scitotenv.2016.10.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation of marine environment could be the response to oil spills threats. In the present study the fungal community from a Mediterranean marine site chronically interested by oil spills was investigated. Sixty-seven taxa were isolated from water sample and 17 from sediments; for many of the identified species is the first report in seawater and sediments, respectively. The growth of 25% of the fungal isolates was stimulated by crude oil as sole carbon source. Four strains were selected to screen hydrocarbons degradation using the 2,6-dichlorophenol indophenol (DCPIP) colorimetric assay. A. terreus MUT 271, T. harzianum MUT 290 and P. citreonigrum MUT 267 displayed a high decolorization percentage (DP≥68%). A. terreus displayed also the highest decreases of hydrocarbons compounds (up to 40%) quantified by gas-chromatography analysis. These results suggest that the selected fungi could represent potential bioremediation agents with strong crude oil degradative capabilities.
Collapse
Affiliation(s)
- Elena Bovio
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Giorgio Gnavi
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Federica Spina
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Michail Yakimov
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Rosario Calogero
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Giovanna Cristina Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|