1
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Yadav S, Mali SN, Pandey A. Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation. Biol Trace Elem Res 2024:10.1007/s12011-024-04446-4. [PMID: 39570521 DOI: 10.1007/s12011-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Peptic ulcers, affecting approximately 10% of the global population, can result from factors such as stress, alcohol use, smoking, NSAIDs, Helicobacter pylori infection, and genetic predisposition. Plant-based medicines are gaining recognition for their therapeutic potential, including in the treatment of peptic ulcers. Green chemistry methods for the biological synthesis of nanoparticles (NPs) provide a sustainable alternative to traditional chemical techniques. These nanoparticles, particularly metallic NPs and metal oxides synthesized from plant extracts, offer promising anti-ulcer properties. This review highlights research from 2000 to 2024 on the use of green-synthesized nanoparticles and their role in peptic ulcer treatment, focusing on their therapeutic mechanisms and potential benefits. For this purpose, an electronic search of published research and review articles was conducted in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| |
Collapse
|
3
|
Hochvaldova L, Posselt G, Wessler S, Kvítek L, Panáček A. Implications of silver nanoparticles for H. pylori infection: modulation of CagA function and signaling. Front Cell Infect Microbiol 2024; 14:1419568. [PMID: 38983115 PMCID: PMC11231068 DOI: 10.3389/fcimb.2024.1419568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Background Helicobacter pylori infection poses a significant health burden worldwide, and its virulence factor CagA plays a pivotal role in its pathogenesis. Methods In this study, the interaction between H. pylori-infected AGS cells and silver nanoparticles (AgNPs) was investigated, with a focus on the modulation of CagA-mediated responses, investigated by western blotting. Both, the dose-dependent efficacy against H. pylori (growth curves, CFU assay) and the impact of the nanoparticles on AGS cells (MTT assay) were elucidated. Results AGS cells infected with H. pylori displayed dramatic morphological changes, characterized by elongation and a migratory phenotype, attributed to CagA activity. Preincubation of H. pylori with AgNPs affected these morphological changes in a concentration-dependent manner, suggesting a correlation between AgNPs concentration and CagA function. Conclusion Our study highlights the nuanced interplay between host-pathogen interactions and the therapeutic potential of AgNPs in combating H. pylori infection and offers valuable insights into the multifaceted dynamics of CagA mediated responses.
Collapse
Affiliation(s)
- Lucie Hochvaldova
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, Czechia
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris Lodron University of Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris Lodron University of Salzburg, Salzburg, Austria
| | - Libor Kvítek
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, Czechia
| | - Aleš Panáček
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
6
|
Zhang X, Wang C, He Y, Xing J, He Y, Huo X, Fu R, Lu X, Liu X, Lv J, Du X, Chen Z, Li C. Establishment of Noninvasive Methods for the Detection of Helicobacter pylori in Mongolian Gerbils and Application of Main Laboratory Gerbil Populations in China. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6036457. [PMID: 35392259 PMCID: PMC8983185 DOI: 10.1155/2022/6036457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Identifying Helicobacter pylori (H. pylori, Hp) infection in animals before and after artificial infection influences the subsequent experiment. We established effective and noninvasive detection methods, including the gastric fluid nested polymerase chain reaction (PCR) method and the 13C-urea breath test, which can detect Hp before modeling Hp infection in Mongolian gerbils. We designed a gas collection equipment for gerbils. Hp nested PCR was also performed on gastric fluid, gastric mucosa, duodenal contents, and faeces of gerbils challenged with Hp. Conventional Hp detection methods, including rapid urease assay and immunohistochemistry, were compared. Moreover, we assessed the natural infection of Hp in 135 gerbils that had never been exposed to Hp artificially from the major laboratory gerbil groups in China. In 10 Hp infected gerbils, the positive detection results were 100%, 100%, 90%, and 10% in gastric fluid, gastric mucosa, duodenal contents, and faeces with nested PCR, respectively. A rapid urease test performed on gastric mucosa showed that all animals were infected with Hp. Immunohistochemical detection and bacteria culture of gastric mucosa samples that were positive by the nested PCR method also confirmed the presence of Hp. 9% (3/35) and 6% (2/31) natural infection rates were found in conventional gerbil groups from the Capital Medical University and Zhejiang Laboratory Animal Center. In conclusion, we established two noninvasive Hp detection methods that can be performed before modelingHp infection, including the gastric fluid nested PCR method and the 13C-urea breath test.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Cunlong Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Yang He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Jianyi Lv
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| |
Collapse
|