1
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Pelclova D, Zdimal V, Schwarz J, Dvorackova S, Komarc M, Ondracek J, Kostejn M, Kacer P, Vlckova S, Fenclova Z, Popov A, Lischkova L, Zakharov S, Bello D. Markers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E611. [PMID: 30103442 PMCID: PMC6116291 DOI: 10.3390/nano8080611] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/05/2023]
Abstract
Researchers in nanocomposite processing may inhale a variety of chemical agents, including nanoparticles. This study investigated airway oxidative stress status in the exhaled breath condensate (EBC). Nineteen employees (42.4 ± 11.4 y/o), working in nanocomposites research for 18.0 ± 10.3 years were examined pre-shift and post-shift on a random workday, together with nineteen controls (45.5 ± 11.7 y/o). Panels of oxidative stress biomarkers derived from lipids, nucleic acids, and proteins were analyzed in the EBC. Aerosol exposures were monitored during three major nanoparticle generation operations: smelting and welding (workshop 1) and nanocomposite machining (workshop 2) using a suite of real-time and integrated instruments. Mass concentrations during these operations were 0.120, 1.840, and 0.804 mg/m³, respectively. Median particle number concentrations were 4.8 × 10⁴, 1.3 × 10⁵, and 5.4 × 10⁵ particles/cm³, respectively. Nanoparticles accounted for 95, 40, and 61%, respectively, with prevailing Fe and Mn. All markers of nucleic acid and protein oxidation, malondialdehyde, and aldehydes C₆⁻C13 were elevated, already in the pre-shift samples relative to controls in both workshops. Significant post-shift elevations were documented in lipid oxidation markers. Significant associations were found between working in nanocomposite synthesis and EBC biomarkers. More research is needed to understand the contribution of nanoparticles from nanocomposite processing in inducing oxidative stress, relative to other co-exposures generated during welding, smelting, and secondary oxidation processes, in these workshops.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 128 00 Prague 2, Czech Republic.
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1/135, 165 02 Prague 6, Czech Republic.
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1/135, 165 02 Prague 6, Czech Republic.
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Faculty of Mechanical Engineering, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Salmovská 1, 120 00 Prague 2, Czech Republic.
- Faculty of Physical Education and Sport, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, José Martího 31, 162 52 Prague 6, Czech Republic.
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1/135, 165 02 Prague 6, Czech Republic.
| | - Martin Kostejn
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1/135, 165 02 Prague 6, Czech Republic.
| | - Petr Kacer
- Biocev, 1st Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 128 00 Prague 2, Czech Republic.
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 128 00 Prague 2, Czech Republic.
| | - Alexey Popov
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Faculty of Mechanical Engineering, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 128 00 Prague 2, Czech Republic.
| | - Sergey Zakharov
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 128 00 Prague 2, Czech Republic.
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, Lowell, MA 01854, USA.
| |
Collapse
|
3
|
Pelclova D, Zdimal V, Kacer P, Zikova N, Komarc M, Fenclova Z, Vlckova S, Schwarz J, Makeš O, Syslova K, Navratil T, Turci F, Corazzari I, Zakharov S, Bello D. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO 2 production workers. Nanotoxicology 2016; 11:52-63. [PMID: 27855548 DOI: 10.1080/17435390.2016.1262921] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial. Animal studies have documented lung injury and inflammation, oxidative stress, cytotoxicity and genotoxicity. Yet, human health data are scarce and quantitative risk assessments and biomonitoring of exposure are lacking. NanoTiO2 is classified by IARC as a group 2B, possible human carcinogen. In our earlier studies we documented an increase in markers of inflammation, as well as DNA and protein oxidative damage, in exhaled breath condensate (EBC) of workers exposed nanoTiO2. This study focuses on biomarkers of lipid oxidation. Several established lipid oxidative markers (malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-isoProstaglandin F2α and aldehydes C6-C12) were studied in EBC and urine of 34 workers and 45 comparable controls. The median particle number concentration in the production line ranged from 1.98 × 104 to 2.32 × 104 particles/cm3 with ∼80% of the particles <100 nm in diameter. Mass concentration varied between 0.40 and 0.65 mg/m3. All 11 markers of lipid oxidation were elevated in production workers relative to the controls (p < 0.001). A significant dose-dependent association was found between exposure to TiO2 and markers of lipid oxidation in the EBC. These markers were not elevated in the urine samples. Lipid oxidation in the EBC of workers exposed to (nano)TiO2 complements our earlier findings on DNA and protein damage. These results are consistent with the oxidative stress hypothesis and suggest lung injury at the molecular level. Further studies should focus on clinical markers of potential disease progression. EBC has reemerged as a sensitive technique for noninvasive monitoring of workers exposed to engineered nanoparticles.
Collapse
Affiliation(s)
- Daniela Pelclova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Vladimir Zdimal
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Petr Kacer
- c Institute of Chemical Technology Prague , Prague , Czech Republic
| | - Nadezda Zikova
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Martin Komarc
- d Department of Methodology , Faculty of Physical Education and Sport, Charles University in Prague , Prague , Czech Republic.,e First Faculty of Medicine, Institute of Informatics, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Zdenka Fenclova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Stepanka Vlckova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Jaroslav Schwarz
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Otakar Makeš
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Kamila Syslova
- c Institute of Chemical Technology Prague , Prague , Czech Republic
| | - Tomas Navratil
- f J. Heyrovský Institute of Physical Chemistry of the CAS , Prague , Czech Republic
| | - Francesco Turci
- g Department of Chemistry , "G. Scansetti" Interdepartmental Centre, and NIS Interdepartmental Centre, University of Torino , Torino , Italy
| | - Ingrid Corazzari
- g Department of Chemistry , "G. Scansetti" Interdepartmental Centre, and NIS Interdepartmental Centre, University of Torino , Torino , Italy
| | - Sergey Zakharov
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Dhimiter Bello
- h UMass Lowell, Department of Public Health , College of Health Sciences , Lowell, MA , USA
| |
Collapse
|
5
|
Secondo LE, Liu NJ, Lewinski NA. Methodological considerations when conductingin vitro, air–liquid interface exposures to engineered nanoparticle aerosols. Crit Rev Toxicol 2016; 47:225-262. [DOI: 10.1080/10408444.2016.1223015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lynn E. Secondo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Nathan J. Liu
- Institute for Work and Health (IST), University of Lausanne and Geneva, Epalinges-Lausanne, Switzerland
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Work and Health (IST), University of Lausanne and Geneva, Epalinges-Lausanne, Switzerland
| |
Collapse
|
6
|
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O, Syslova K, Belacek J, Zakharov S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO
2
nanoparticles. J Breath Res 2016; 10:036004. [DOI: 10.1088/1752-7155/10/3/036004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|