1
|
Slavyanskaya TA, Salnikova SV. Precision oncology: myth or reality? BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer incidence rates are growing at an alarming pace pressing for the development of innovative personalized approaches to treating this disease. The absence of clinical symptoms in the early stages delays the onset of adequate treatment. Traditional therapies are not always as effective as they should be and do not guarantee long-lasting relapse-free survival. Metastatic cancers pose a particular challenge to healthcare professionals. This review touches upon the immunologic mechanisms underlying the development of malignancies, talks about conventional and innovative therapeutic modalities, such as targeted, gene or specific immunotherapies, and analyzes the literature on the use of different approaches that form a basis for precision oncology.
Collapse
|
2
|
Oluyadi F, Ramachandran P, Gotlieb V. A Rare Case of Advanced Urethral Diverticular Adenocarcinoma and a Review of Treatment Modalities. J Investig Med High Impact Case Rep 2019; 7:2324709619828408. [PMID: 30739492 PMCID: PMC6376544 DOI: 10.1177/2324709619828408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Female urethral diverticular cancer is a very rare entity with only around 100 cases reported so far in literature and accounts for <1% of all malignancies. In this article, we present a 47-year-old African American female with repeated hospital visits for urinary retention, hematuria, and urinary tract infections. Initial computed tomography imaging and cystoscopy was unremarkable except for a distended urinary bladder. Subsequent magnetic resonance imaging and corresponding cystoscopy eventually indicated the presence of a urethral diverticulum. She underwent urethral diverticulectomy and was found to have a mass arising from urethral diverticulum extending to vaginal walls. Her biopsy was suggestive of invasive adenocarcinoma in advanced stages, for which she subsequently underwent a total pelvic exenteration. Next-generation sequencing of the tumor showed CDKN2A/B loss, MSI-stable, and low TMB, thereby ruling out the options for targeted therapies. Extensive literature search and expert opinions were sought for her case since no consensus exists regarding the optimal therapeutic approach due to the rarity of this tumor. A final decision was made to treat her with platinum-based chemotherapy. Different treatment approaches including neoadjuvant chemoradiation followed by surgery, surgery followed by adjuvant chemotherapy, and surgery followed by chemoradiation have been tried. Platinum-based chemotherapy has generally been preferred based on an extensive literature search. Multimodality treatment approach seems to be the current approach to management for advanced stages for better overall survival. This case illustrates the challenges faced in making diagnosis and treatment decisions due to the rarity of this type of tumor and lack of consensus in the treatment approach.
Collapse
Affiliation(s)
- Fatai Oluyadi
- 1 Brookdale University Hospitals and Medical Center, New York, NY, USA
| | | | - Vladmir Gotlieb
- 1 Brookdale University Hospitals and Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Buss JH, Begnini KR, Bender CB, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer. Front Pharmacol 2018; 8:977. [PMID: 29379438 PMCID: PMC5770893 DOI: 10.3389/fphar.2017.00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karine Rech Begnini
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonemann Bender
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun 2016; 7:13325. [PMID: 27830705 PMCID: PMC5109543 DOI: 10.1038/ncomms13325] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Personalized medicine promises to revolutionize cancer therapy by matching the most effective treatment to the individual patient. Using a nanoparticle-based system, we predict the therapeutic potency of anticancer medicines in a personalized manner. We carry out the diagnostic stage through a multidrug screen performed inside the tumour, extracting drug activity information with single cell sensitivity. By using 100 nm liposomes, loaded with various cancer drugs and corresponding synthetic DNA barcodes, we find a correlation between the cell viability and the drug it was exposed to, according to the matching barcodes. Based on this screen, we devise a treatment protocol for mice bearing triple-negative breast-cancer tumours, and its results confirm the diagnostic prediction. We show that the use of nanotechnology in cancer care is effective for generating personalized treatment protocols. Determining the most effective treatment for each cancer patient is a key challenge in cancer therapy. In this article, the authors show, in a mouse model of breast cancer, that DNA barcoded nanoparticles can be used for pre-screening the efficacy of anticancer drugs.
Collapse
|