1
|
Cao C, Hu B, Wang J, Li W, Guo L, Sheng J, Zhang C. Swertianin Promotes Anti-Tumor activity by facilitating Macrophage M1 polarization via STING signaling. Int Immunopharmacol 2024; 142:113182. [PMID: 39298821 DOI: 10.1016/j.intimp.2024.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
To investigate the mechanism by which swertiamarin (swertianin, SWE) regulates the polarization of tumor microenvironment-associated macrophages to M1 phenotype, thereby exerting anti-tumor effects.SWE promoted the formation of M1 cells and increased the proportion of CD86 + cells in both RAW264.7 and primary monocyte-derived macrophages, while activating the STING-NF-κB pathway. When STING or P65 was knocked out, the effects of SWE were antagonized, inhibiting the formation of CD86 + M1 cells. At the animal level, SWE inhibited tumor growth, activated STING-NF-κB, and promoted the formation of CD86 + cells. STING-KO inhibited the effects of SWE.SWE can activate the STING-NF-κB signal to promote macrophage M1 polarization, playing an anti-tumor role.
Collapse
Affiliation(s)
- Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Biwen Hu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Li Guo
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Caiqun Zhang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
2
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
4
|
Brinza I, Raey MAE, El-Kashak W, Eldahshan OA, Hritcu L. Sweroside Ameliorated Memory Deficits in Scopolamine-Induced Zebrafish ( Danio rerio) Model: Involvement of Cholinergic System and Brain Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185901. [PMID: 36144637 PMCID: PMC9502219 DOI: 10.3390/molecules27185901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective activities. Zebrafish were given sweroside (12.79, 8.35, and 13.95 nM) by immersion once daily for 8 days, along with scopolamine (Sco, 100 μM) 30 min before the initiation of the behavioral testing to cause anxiety and memory loss. Employing the novel tank diving test (NTT), the Y-maze, and the novel object recognition test (NOR), anxiety-like reactions and memory-related behaviors were assessed. The following seven groups (n = 10 animals per group) were used: control, Sco (100 μM), sweroside treatment (2.79, 8.35, and 13.95 nM), galantamine (GAL, 2.71 μM as the positive control in Y-maze and NOR tests), and imipramine (IMP, 63.11 μM as the positive control in NTT test). Acetylcholinesterase activity (AChE) and the antioxidant condition of the brains were also evaluated. The structure of sweroside isolated from Schenkia spicata was identified. Treatment with sweroside significantly improved the Sco-induced decrease of the cholinergic system activity and brain oxidative stress. These results suggest that sweroside exerts a significant effect on anxiety and cognitive impairment, driven in part by the modulation of the cholinergic system activity and brain antioxidant action.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700505 Iasi, Romania
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Walaa El-Kashak
- Department of Chemistry of Natural Compounds, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Correspondence: (O.A.E.); (L.H.); Tel.: +20-101-184-1951 (O.A.E.); +40-232-201-666 (L.H.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700505 Iasi, Romania
- Correspondence: (O.A.E.); (L.H.); Tel.: +20-101-184-1951 (O.A.E.); +40-232-201-666 (L.H.)
| |
Collapse
|
5
|
Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, Koirala N, Adnan M, Alghamdi S, Assaggaf H, Alsiwiehri NO. A comprehensive review on antiepileptic properties of medicinal plants. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
6
|
Taiwe GS, Ndieudieu Kouamou AL, Dabole B, Ambassa ARM, Mambou HMAY, Bila RB, Tchoya TB, Menanga JR, Djomeni Dzeufiet PD, Ngo Bum E. Protective Effects of Anthocleista djalonensis Extracts against Pentylenetetrazole-Induced Epileptic Seizures and Neuronal Cell Loss: Role of Antioxidant Defense System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5523705. [PMID: 34504535 PMCID: PMC8423543 DOI: 10.1155/2021/5523705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Oxidative stress and neurodegeneration are involved in the initiation of epileptogenesis and progression of epileptic seizures. This study was aimed at investigating the anticonvulsant, antioxidant, and neuroprotective properties of active fractions isolated from Anthocleista djalonensis root barks in pentylenetetrazole mouse models of epileptic seizures. Bioactive-guided fractionation of Anthocleista djalonensis (AFAD) extracts using acute pentylenetetrazole (90 mg/kg) induced generalised tonic-clonic seizures, which afforded a potent anticonvulsant fraction (FPool 5). Further fractionation of AFAD was performed by high-performance liquid chromatography, which yielded fifteen subfractions, which were chemically characterised. In addition, AFAD was tested against convulsions or spontaneous kindled seizures induced, respectively, by acute (50 mg/kg) or subchronic (30 mg/kg) injection of pentylenetetrazole. Finally, oxidative stress markers, brain GABA content, and neuronal cell loss were evaluated in AFAD-treated pentylenetetrazole-kindled mice. Administration of AFAD significantly protected mice against acute pentylenetetrazole (90 mg/kg)-induced convulsions. In acute pentylenetetrazole (50 mg/kg)-induced hippocampal and cortical paroxysmal discharges, AFAD significantly decreased the number of crisis, the cumulative duration of crisis, and the mean duration of crisis. Additionally, AFAD significantly decreased the number of myoclonic jerks and improved the seizure score in subchronic pentylenetetrazole-induced kindled seizures. The pentylenetetrazole-induced alteration of oxidant-antioxidant balance, GABA concentration, and neuronal cells in the brain were attenuated by AFAD treatment. This study showed that AFAD protected mice against pentylenetetrazole-induced epileptic seizures possibly through the enhancement of antioxidant defence and GABAergic signalling. These events might be correlated with the amelioration of neuronal cell loss; hence, AFAD could be a potential candidate for the treatment of epilepsy.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Raymond Bess Bila
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| |
Collapse
|
7
|
Gentiopicroside Produces Endothelium-Independent Vasodilation by Deactivating the PI3K/Akt/Rho-Kinase Pathway in Isolated Rat Thoracic Aorta. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5565748. [PMID: 34095301 PMCID: PMC8140822 DOI: 10.1155/2021/5565748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Gentiopicroside (GPS), a main active secoiridoid glucoside derived from the roots of perennial herbs in the Gentianaceae family, has antispasmodic and relaxant effects. However, the vasorelaxant effects of GPS on aortic rings and the molecular mechanisms involved in these effects are not yet clear. Therefore, we investigated whether GPS inhibits phenylephrine- (PE-) or KCl-induced contractions in isolated rat thoracic aortic rings. The present study found that GPS produced a dose-dependent relaxation in aortic rings precontracted with PE or KCl and significantly reduced CaCl2-, narciclasine- (Rho-kinase activator-), and phorbol-12,13-diacetate- (PKC activator-) induced vasocontractions. Pretreatment with NG-Nitroarginine methyl ester hydrochloride (L-NAME, NOS inhibitor), methylene blue (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV channel inhibitor), and glibenclamide (KATP channel inhibitor) had no influence on the vasorelaxant effect of GPS, while BaCl2 (Kir channel inhibitor), tetraethylammonium chloride (KCa channel inhibitor), ruthenium red (RYR inhibitor), and heparin (IP3R inhibitor) significantly reduced GPS-induced vasorelaxation. Moreover, GPS pretreatment remarkably inhibited the influx of Ca2+ in vascular smooth muscle cells stimulated using KCl or PE-containing CaCl2 solution. Western blot analysis confirmed that GPS treatment inhibited PE-induced increases in the protein levels of p-Akt, p-myosin light chain (MLC), and p-myosin-binding subunit of myosin phosphatase 1 (MYPT1) in the aortic rings. Additionally, the vasorelaxation activity of GPS was attenuated upon pretreatment with LY294002 (PI3K/Akt inhibitor), Y27632 (Rho-kinase inhibitor), and verapamil (L-type Ca2+ channel inhibitor). These findings demonstrate that GPS exhibits endothelium-independent vasorelaxant effects through inhibition of voltage-dependent, receptor-operated, and inositol triphosphate receptor (IP3R)/ryanodine receptor- (RYR-) mediated Ca2+ channels as well as the PI3K/Akt/Rho-kinase signaling pathway.
Collapse
|
8
|
Gong G, Chen H, Kam H, Chan G, Tang YX, Wu M, Tan H, Tse YC, Xu HX, Lee SMY. In Vivo Screening of Xanthones from Garcinia oligantha Identified Oliganthin H as a Novel Natural Inhibitor of Convulsions. JOURNAL OF NATURAL PRODUCTS 2020; 83:3706-3716. [PMID: 33296199 DOI: 10.1021/acs.jnatprod.0c00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epilepsy is a chronic neurological disorder, characterized by recurrent, spontaneous, and transient seizures, and affects more than 70 million people worldwide. Although two dozen antiepileptic drugs (AEDs) are approved and available in the market, seizures remain poorly controlled in one-third of epileptic patients who are suffering from drug resistance or various adverse effects. Recently, the xanthone skeleton has been regarded as an attractive scaffold for the discovery and development of emerging anticonvulsants. We had isolated several dihydroxanthone derivatives previously, including oliganthin H, oliganthin I, and oliganthin N, whose structures were similar and delicately elucidated by spectrum analysis or X-ray crystallographic data, from extracts of leaves of Garcinia oligantha. These xanthone analogues were evaluated for anticonvulsant activity, and a novel xanthone, oliganthin H, has been identified as a sound and effective natural inhibitor of convulsions in zebrafish in vivo. A preliminary structure-activity relationship analysis on the relationship between structures of the xanthone analogues and their activities was also conducted. Oliganthin H significantly suppressed convulsant behavior and reduced to about 25% and 50% of PTZ-induced activity, in 12.5 and 25 μM treatment groups (P < 0.01 and 0.001), respectively. Meanwhile, it reduced seizure activity, velocity, seizure duration, and number of bursts in zebrafish larvae (P < 0.05). Pretreatment of oliganthin H significantly restored aberrant induction of gene expressions including npas4a, c-fos, pyya, and bdnf, as well as gabra1, gad1, glsa, and glula, upon PTZ treatment. In addition, in silico analysis revealed the stability of the oliganthin H-GABAA receptor complex and their detailed binding pattern. Therefore, direct interactions with the GABAA receptor and involvement of downstream GABA-glutamate pathways were possible mechanisms of the anticonvulsant action of oliganthin H. Our findings present the anticonvulsant activity of oliganthin H, provide a novel scaffold for further modifications, and highlight the xanthone skeleton as an attractive and reliable resource for the development of emerging AEDs.
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
- The Second Affiliated Hospital, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yue-Xun Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Begum A, Biswas P, Shahed-Al-Mahmud M. Methanol extract of Spathodea campanulata P. (Beauv.) leaves demonstrate sedative and anxiolytic like actions on swiss albino mice. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spathodea campanulata P. Beauv. (Bignoniaceae) is a very common plant in Bangladesh which is locally called “Rudrapalash”. In Nigeria leaves extract of S. campanulata has a reputation of being used as an anticonvulsant. In this connection, the aim of this study was to investigate other neuropharmacological effects like sedative and anxiolytic activities of methanol extract of S. campanulata (MESC) leaves in different mice tests.
Methods
To assay sedative activity mice were subjected to open field and hole-cross test, whereas anxiolytic activity was checked by the elevated-plus maze, light-dark box, and hole-board test. For each test, mice were divided into control group (deionized water, 0.1 ml/mouse, p.o.), standard group (diazepam, 1 mg/kg, i.p) and three test groups (200, 400 and 600 mg/kg MESC, p.o.). The acute toxicity test and phytochemical screening of MESC were performed before the pharmacological study.
Results
The result demonstrated strong sedative and anxiolytic activity of MESC in a dose-dependent manner. All doses of MESC (200, 400 & 600 mg/kg) reduced the number of (square & hole) crossed by mice in both open field and hole cross tests (p < 0.001). On the other hand, in elevated plus-maze and light-dark box test mice opted to stay more in open arms and light box instead of close arms and dark box (p < 0.001). In hole-board test MESC (200, 400 & 600 mg/kg) elevated the number of head dipping (p < 0.001) dose-dependently. Phytochemical investigation indicated the presence of alkaloid, saponin, glycoside, carbohydrate, flavonoid, and tannin in MESC.
Conclusion
The experimental results explicit that S. campanulata leaves possess sedative and anxiolytic activities, hence suggest further chemical investigation to identify specific phytoconstituents responsible for sedative and anxiolytic effects.
Collapse
|
10
|
Muscle relaxant activities of pistagremic acid isolated from Pistacia integerrima. ACTA ACUST UNITED AC 2018; 73:413-416. [DOI: 10.1515/znc-2017-0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 09/05/2018] [Indexed: 12/30/2022]
Abstract
Abstract
The aim of the current work was to explore the muscle relaxant effect of pistagremic acid (PA) isolated from Pistacia integerrima in various animal paradigms. In a rotarod test, PA caused a significant (p<0.05) muscle relaxant potential in a dose-dependent manner. When studied in the inclined plane test, pretreatment with PA (5 and 10 mg/kg) caused promising activity (p<0.05) after treatment for 30, 60 and 90 min. The muscle relaxant potential of PA was strongly complimented by the traction and chimney tests, showing a dominant effect after 60 min of treatment. In conclusion, PA possesses strong muscle relaxant activity in various animal-based models.
Collapse
|
11
|
Effect of aqueous extract of Moringa oleifera leaves on pharmacological models of epilepsy and anxiety in mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ijep.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Objective Among the psychiatric co-morbidities in epilepsy, anxiety disorders are highly frequent and have profound influence on the quality of life of epilepsy patients. Moringa oleifera Lam. (Moringaceae) is used in traditional medicine to treat various ailments including anxiety and epilepsy. However, no scientific evidence exists to support its use. We studied antiepileptic and anxiolytic activities of aqueous extract of Moringa oleifera Lam. leaves (AEMO).
Methods Antiepileptic activity was evaluated using pentylenetetrazole (PTZ) induced seizure and maximum electroshock (MES) induced seizure test and anxiolytic activity was evaluated using elevated plus maze, light/dark box and hole board test.
Results In present study, AEMO (250, 375 and 500 mg/kg, i.p.) demonstrated significant antiepileptic and anxiolytic effects. To study involvement of GABA in anxiolytic and antiepileptic activity of AEMO, we also evaluated effect of AEMO on Baclofen induced catatonia, a GABA mediated behavior, wherein AEMO significantly potentiated (preponed) baclofen induced catatonia, which is suggestive of its GABA mimetic action.
Conclusion Thus, it may be concluded that aqueous extract of M. oleifera possess anxiolytic and antiepileptic effects possibly mediated via of GABA mimetic action and these findings authenticate the traditional claims about use of Moringa oleifera in treatment of epilepsy and anxiety.
Collapse
|
12
|
Mahendran G, Vijayan R. Neuropharmacological and molecular docking studies of xanthones from Swertia corymbosa. J Recept Signal Transduct Res 2018; 38:166-177. [DOI: 10.1080/10799893.2018.1458875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Mahendran
- Department of Botany, Bharathidasan University, Tiruchirapalli, India
| | | |
Collapse
|
13
|
Viswanatha GL, Venkataranganna MV, Prasad NBL. Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed Pharmacother 2017; 90:455-465. [PMID: 28391167 DOI: 10.1016/j.biopha.2017.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colebrookea oppositifolia Smith is one of the commonly used plants to treat epilepsy by various folk medicine communities like nomadic Gujjars, Tharu and Bhoxa in sub-Himalayan regions of India. PURPOSE The present study was undertaken to evaluate the anticonvulsant activity of roots of Colebrookea oppositifolia using various experimental models of epilepsy in mice. METHODS Petroleum ether extract of roots of C. Oppositifolia (PeCO), methanolic eCO (MeCO) and aqueous eCO (AeCO) was initially evaluated in six-hertz-seizure test in mice, the effective extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ) models in mice. In addition, the potent extract was evaluated against the PTZ model by co-administering with flumazenil (FMZ), and also evaluated for its effect on brain GABA levels in brain and NMDA-induced lethality in mice. Furthermore, the possible locomotor deficit-inducing property of the extract was evaluated by actophotometer test in mice. RESULTS In six-hertz-seizure test the MeCO (25, 50, 100 and 200mg/kg) and AeCO (50, 100, 200, 400 and 800mg/kg) showed significant protection compared to control group, and MeCO was more potent than AeCO. Based on these outcomes, only MeCO was evaluated in MES and PTZ models. Notably, the MeCO (25, 50, 100 and 200mg/kg) has offered significant and dose- dependent protection against MES and PTZ-induced seizures in mice. Alongside, the MeCO (100 and 200mg/kg) showed a significant increase in GABA levels in the brain compared to control. In line with these findings, the anti-PTZ effect of MeCO (100mg/kg, p.o.) was blocked when co-administered with flumazenil (3mg/kg, i.p.),and in NMDA-induced mortality test, the MeCO has shown only 50% protection at 200mg/kg dose, thus confirmed the significant role of GABA pathway. Interestingly, the MeCO did not cause significant change in locomotor activity compared to before treatment. CONCLUSION These findings suggest that MeCO possess significant anticonvulsant activity and the outcomes further confirmed the involvement of GABAergic mechanisms behind the anticonvulsant activity of MeCO.
Collapse
|
14
|
Antioxidants, anti-proliferative, anti-inflammatory, anti-diabetic and anti-microbial effects of isolated compounds from Swertia corymbosa (Grieb.) Wight ex C.B. Clark – An in vitro approach. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Systematic Review of the Use of Phytochemicals for Management of Pain in Cancer Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506327. [PMID: 26576425 PMCID: PMC4630373 DOI: 10.1155/2015/506327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022]
Abstract
Pain in cancer therapy is a common condition and there is a need for new options in therapeutic management. While phytochemicals have been proposed as one pain management solution, knowledge of their utility is limited. The objective of this study was to perform a systematic review of the biomedical literature for the use of phytochemicals for management of cancer therapy pain in human subjects. Of an initial database search of 1,603 abstracts, 32 full-text articles were eligible for further assessment. Only 7 of these articles met all inclusion criteria for this systematic review. The average relative risk of phytochemical versus control was 1.03 [95% CI 0.59 to 2.06]. In other words (although not statistically significant), patients treated with phytochemicals were slightly more likely than patients treated with control to obtain successful management of pain in cancer therapy. We identified a lack of quality research literature on this subject and thus were unable to demonstrate a clear therapeutic benefit for either general or specific use of phytochemicals in the management of cancer pain. This lack of data is especially apparent for psychotropic phytochemicals, such as the Cannabis plant (marijuana). Additional implications of our findings are also explored.
Collapse
|
16
|
Franco-Pérez J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J. Anticonvulsant effects of mefloquine on generalized tonic-clonic seizures induced by two acute models in rats. BMC Neurosci 2015; 16:7. [PMID: 25886955 PMCID: PMC4411716 DOI: 10.1186/s12868-015-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mefloquine can cross the blood–brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this study was to analyze the effects of the systemic administration of mefloquine on tonic-clonic seizures induced by two acute models such as pentylenetetrazole and maximal electroshock. Results All the control rats presented generalized tonic-clonic seizures after the administration of pentylenetetrazole. However, the incidence of seizures induced by pentylenetetrazole significantly decreased in the groups administered systematically with 40 and 80 mg/kg of mefloquine. In the control group, none of the rats survived after the generalized tonic-clonic seizures induced by pentylenetetrazole, but survival was improved by mefloquine. Besides, mefloquine significantly modified the total spectral power as well as the duration, amplitude and frequency of the epileptiform activity induced by pentylenetetrazole. For the maximal electroshock model, mefloquine did not change the occurrence of tonic hindlimb extension. However, this gap junction blocker significantly decreased the duration of the tonic hindlimb extension induced by the acute electroshock. Conclusions These data suggest that mefloquine at low doses might be eliciting some anticonvulsant effects when is systemically administered to rats.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico, DF, Mexico.
| | - Paola Ballesteros-Zebadúa
- Laboratory of Medical Physics, National Institute of Neurology and Neurosurgery, M.V.S, Mexico, DF, Mexico.
| | - Joaquín Manjarrez-Marmolejo
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico, DF, Mexico.
| |
Collapse
|
17
|
Mahendran G, Manoj M, Murugesh E, Sathish Kumar R, Shanmughavel P, Rajendra Prasad KJ, Narmatha Bai V. In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from Swertia corymbosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1237-1248. [PMID: 25172785 DOI: 10.1016/j.phymed.2014.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
1, 2, 8-trihydroxy-6-methoxy xanthone (1) and 1, 2- dihydroxy-6-methoxyxanthone-8-O-β-d-xylopyranosyl (2) are the main constituents of petroleum ether and ethyl acetate extracts from Swertia corymbosa (Gentinaceae), a medicinal plant used in Indian traditional system for the treatment of diabetes. The present study was designed to examine the antihypoglycemic, antihyperlipidemic and antioxidant effect of compounds 1 and 2 in streptozotocin (STZ) induced diabetic rats. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of STZ (60 mg/kg b.w.). The isolated compounds 1 and 2 at a dose of 50 mg/kg b.w., produced the maximum fall of 83% in the blood glucose level in the diabetic rats after 3h of the treatment. The administration of 1 and 2 (50 mg/kgb.w.) daily for 28 days in STZ induced diabetic rats, resulted in a significant decrease in blood glucose, glycosylated hemoglobin, SGOT, SGPT, ALP serum urea and creatinine with significant rise in plasma insulin level. Test compounds 1 and 2 showed antihyperlipidemic activities as evidenced by significant decrease in serum TC, TG, LDL-C, VLDL-C levels coupled together with elevation of HDL-C level in diabetic treated rats when compared to diabetic untreated rats, indicate the protective role against liver and kidney damage. The results of histopathology also showed 1 and 2 protected tissues (pancreas, liver and kidney) against peroxidation damage and maintained tissue integrity. Further, the molecular interaction study of the ligands 1, 2 and glibenclamide with various diabetes mellitus related protein targets like glucokinase (PDB ID: 1V4S), fructose-1, 6-bisphosphatase 1 (PDB ID: 2JJK) 11-β-hydroxysteroid dehydrogenase (PDB ID: 2BEL) and modeled protein sulfonylurea receptor 1 (SUR1) showed that ligand 1 and 2 possess binding affinity with all protein targets except for 2BEL target protein for which ligand 1 has no interaction. The ligand pose with 2BEL and SUR1 protein target of ligand 2 gave the best binding conformation. Hence 1 and 2 can be considered for developing into a potent antidiabetic drug.
Collapse
Affiliation(s)
- G Mahendran
- Plant Tissue Culture Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - M Manoj
- Department of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - E Murugesh
- Computational Biology Lab, Bioinformatics Department, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - R Sathish Kumar
- Computational Biology Lab, Bioinformatics Department, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - P Shanmughavel
- Computational Biology Lab, Bioinformatics Department, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - K J Rajendra Prasad
- Department of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - V Narmatha Bai
- Plant Tissue Culture Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|