1
|
Yu B, Zhou C, Wang Z, Bucher M, Schaaf G, Sawers RJH, Chen X, Hochholdinger F, Zou C, Yu P. Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. THE NEW PHYTOLOGIST 2024; 243:1936-1950. [PMID: 38973063 DOI: 10.1111/nph.19952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024]
Abstract
The antagonistic interplay between phosphorus (P) and zinc (Zn) in plants is well established. However, the molecular mechanisms mediating those interactions as influenced by arbuscular mycorrhizal (AM) symbiosis remain unclear. We investigated Zn concentrations, root AM symbiosis, and transcriptome profiles of maize roots grown under field conditions upon different P levels. We also validated genotype-dependent P-Zn uptake in selected genotypes from a MAGIC population and conducted mycorrhizal inoculation experiments using mycorrhizal-defective mutant pht1;6 to elucidate the significance of AM symbiosis in P-Zn antagonism. Finally, we assessed how P supply affects Zn transporters and Zn uptake in extraradical hyphae within a three-compartment system. Elevated P levels led to a significant reduction in maize Zn concentration across the population, correlating with a marked decline in AM symbiosis, thus elucidating the P-Zn antagonism. We also identified ZmPht1;6 is crucial for AM symbiosis and confirmed that P-Zn antagonistic uptake is dependent on AM symbiosis. Moreover, we found that high P suppressed the expression of the fungal RiZRT1 and RiZnT1 genes, potentially impacting hyphal Zn uptake. We conclude that high P exerts systemic regulation over root and AM hyphae-mediated Zn uptake in maize. These findings hold implications for breeding Zn deficiency-tolerant maize varieties.
Collapse
Affiliation(s)
- Baogang Yu
- Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany
| | - Chengxiang Zhou
- Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhonghua Wang
- National Engineering Research Center of Wheat and Maize, Maize Research Institute, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, 53115, Bonn, Germany
| | - Ruairidh J H Sawers
- Department of Plant Science, Pennsylvania State University, State College, PA, 16802, USA
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, 400715, Chongqing, China
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany
| | - Chunqin Zou
- Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
2
|
Maharajan T, Krishna TPA, Shilpha J, Ceasar SA. Effects of Individual or Combined Deficiency of Phosphorous and Zinc on Phenotypic, Nutrient Uptake, and Molecular Responses of Finger Millet ( Eleusine coracana): A Nutri-Rich Cereal Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:3378. [PMID: 37836117 PMCID: PMC10574462 DOI: 10.3390/plants12193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Deficiencies of either phosphorus (P) or zinc (Zn) or both are one of the major abiotic constraints influencing agricultural production. Research on the effects of individual or combined P and Zn deficiency is limited in cereals. This study reports the effects of the individual or combined deficiency of inorganic phosphate (Pi) and Zn on the phenotypic, root hair modification, nutrient uptake, and molecular responses of finger millet (Eleusine coracana), a nutri-rich cereal crop. Finger millet seedlings were grown hydroponically under control (+Pi+Zn), individual Pi deficiency (-Pi), individual Zn deficiency (-Zn), and combined Pi and Zn deficiency (-Pi-Zn) conditions for 30 days to find the phenotypic, root hair modification, nutrient uptake, and molecular responses. Compared to the individual -Zn condition, the individual -Pi condition had more of an effect in terms of biomass reduction. The combined -Pi-Zn condition increased the root hair length and density compared to the other three conditions. The individual -Zn condition increased the Pi uptake, while the individual -Pi condition favored the Zn uptake. EcZIP2 was highly upregulated in shoot tissues under the individual -Zn condition, and EcPHT1;2 was highly expressed in root tissues under the individual -Pi condition. This is the first study to report the effects of the individual or combined deficiency of Pi and Zn in finger millet and may lead to future studies to better manage P and Zn deficiency.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| | | | - Jayabalan Shilpha
- Department of Horticulture, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| |
Collapse
|
3
|
Han LN, Wang SJ, Chen H, Ren Y, Xie XA, Wang XY, Hu WT, Tang M. Arbuscular mycorrhiza mitigates zinc stress on Eucalyptus grandis through regulating metal tolerance protein gene expression and ionome uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:1022696. [PMID: 36420037 PMCID: PMC9676645 DOI: 10.3389/fpls.2022.1022696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most terrestrial plants and enhance their adaptability in metal-contaminated soils. In this study, mycorrhized and non-mycorrhized Eucalyptus grandis were grown under different Zn treatments. After 6 weeks of treatment, the growing status and ionome content of plants as well as the expression patterns of metal tolerance proteins and auxin biosynthesis-related genes were measured. In this study, mycorrhized E. grandis showed higher biomass and height at a high level of Zn compared with non-mycorrhized plants. In addition, AM plants accumulated P, Mg, and Mn in roots and P, Fe, and Cu in shoots, which indicate that AM fungi facilitate the uptake of ionome nutrients to promote plant growth. In addition, mycorrhiza upregulated the expression of EgMTP1 and EgMTP7, whose encoding proteins were predicted to be located at the vacuolar membrane. Meanwhile, Golgi membrane transporter EgMTP5 was also induced in AM shoot. Our results suggest that AM likely mitigates Zn toxicity through sequestrating excess Zn into vacuolar and Golgi. Furthermore, the expression of auxin biosynthesis-related genes was facilitated by AM, and this is probably another approach for Zn tolerance.
Collapse
|
4
|
Phosphorus Starvation- and Zinc Excess-Induced Astragalus sinicus AsZIP2 Zinc Transporter Is Suppressed by Arbuscular Mycorrhizal Symbiosis. J Fungi (Basel) 2021; 7:jof7110892. [PMID: 34829181 PMCID: PMC8623892 DOI: 10.3390/jof7110892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Zinc (Zn) is one of the most essential micronutrients for plant growth and metabolism, but Zn excess can impair many basic metabolic processes in plant cells. In agriculture, crops often experience low phosphate (Pi) and high Zn double nutrient stresses because of inordinate agro-industrial activities, while the dual benefit of arbuscular mycorrhizal (AM) fungi protects plants from experiencing both deficient and toxic nutrient stresses. Although crosstalk between Pi and Zn nutrients in plants have been extensively studied at the physiological level, the molecular basis of how Pi starvation triggers Zn over-accumulation in plants and how AM plants coordinately modulate the Pi and Zn nutrient homeostasis remains to be elucidated. Here, we report that a novel AsZIP2 gene, a Chinese milk vetch (Astragalus sinicus) member of the ZIP gene family, participates in the interaction between Pi and Zn nutrient homeostasis in plants. Phylogenetic analysis revealed that this AsZIP2 protein was closely related to the orthologous Medicago MtZIP2 and Arabidopsis AtZIP2 transporters. Gene expression analysis indicated that AsZIP2 was highly induced in roots by Pi starvation or Zn excess yet attenuated by arbuscular mycorrhization in a Pi-dependent manner. Subcellular localization and heterologous expression experiments further showed that AsZIP2 encoded a functional plasma membrane-localized transporter that mediated Zn uptake in yeast. Moreover, overexpression of AsZIP2 in A. sinicus resulted in the over-accumulation of Zn concentration in roots at low Pi or excessive Zn concentrations, whereas AsZIP2 silencing lines displayed an even more reduced Zn concentration than control lines under such conditions. Our results reveal that the AsZIP2 transporter functioned in Zn over-accumulation in roots during Pi starvation or high Zn supply but was repressed by AM symbiosis in a Pi-dependent manner. These findings also provide new insights into the AsZIP2 gene acting in the regulation of Zn homeostasis in mycorrhizal plants through Pi signal.
Collapse
|
5
|
Fan X, Zhou X, Chen H, Tang M, Xie X. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:663477. [PMID: 34721446 PMCID: PMC8555580 DOI: 10.3389/fpls.2021.663477] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
In nature, land plants as sessile organisms are faced with multiple nutrient stresses that often occur simultaneously in soil. Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are five of the essential nutrients that affect plant growth and health. Although these minerals are relatively inaccessible to plants due to their low solubility and relative immobilization, plants have adopted coping mechanisms for survival under multiple nutrient stress conditions. The double interactions between N, Pi, S, Zn, and Fe have long been recognized in plants at the physiological level. However, the molecular mechanisms and signaling pathways underlying these cross-talks in plants remain poorly understood. This review preliminarily examined recent progress and current knowledge of the biochemical and physiological interactions between macro- and micro-mineral nutrients in plants and aimed to focus on the cross-talks between N, Pi, S, Zn, and Fe uptake and homeostasis in plants. More importantly, we further reviewed current studies on the molecular mechanisms underlying the cross-talks between N, Pi, S, Zn, and Fe homeostasis to better understand how these nutrient interactions affect the mineral uptake and signaling in plants. This review serves as a basis for further studies on multiple nutrient stress signaling in plants. Overall, the development of an integrative study of multiple nutrient signaling cross-talks in plants will be of important biological significance and crucial to sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Cheng L, Min W, Li M, Zhou L, Hsu CC, Yang X, Jiang X, Ruan Z, Zhong Y, Wang ZY, Wang W. Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of Glycine max L. Int J Mol Sci 2021; 22:E920. [PMID: 33477636 PMCID: PMC7831476 DOI: 10.3390/ijms22020920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.
Collapse
Affiliation(s)
- Ling Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Wanling Min
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Man Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Lili Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Xuelian Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Xue Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Zhijie Ruan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| |
Collapse
|
7
|
Zhao Z, Wang Y, Shi J, Wang S, White PJ, Shi L, Xu F. Effect of balanced application of boron and phosphorus fertilizers on soil bacterial community, seed yield and phosphorus use efficiency of Brassica napus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141644. [PMID: 32866830 DOI: 10.1016/j.scitotenv.2020.141644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Rapeseed (Brassica napus L.) is extremely sensitive to both boron (B) and phosphorus (P) deficiencies. Application of chemical fertilizers is generally considered to be an effective agronomic practice to improve crop productivity, and it also affects soil bacterial community. However, there are few studies of the effects of balanced B and P fertilizer applications on crop yield and bacterial communities. In the present study, field experiments with five P application rates (0, 45, 90, 135 and 180 kg P2O5 ha-1) and four B application rates (0, 4.5, 9 and 18 kg Na2B4O7·5H2O ha-1) were conducted in 2016-2017 and 2017-2018 to investigate their effects on seed yield and P use efficiency (PUE) of B. napus. The smallest seed yields were obtained when B or P fertilizers were not applied (P90B0 or P0B9). Balanced B and P applications benefitted yields. The P45B4.5 treatment produced greater seed yield and PUE than the P45B18 treatment, and the P180B18 treatment produced greater seed yield and PUE than the P180B4.5 treatment. Sequencing of 16S rRNA genes revealed that the P90B9 treatment had greater soil bacterial diversity, and a different bacterial community composition, compared with the P90B0 or P0B9 treatments. Overall, our results underline the importance of balanced B and P nutrition for maximal seed yield of B. napus and the effects of B and P fertilizers on the soil bacterial community of B. napus.
Collapse
Affiliation(s)
- Zhe Zhao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianqi Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China; The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
9
|
Yu BG, Chen XX, Cao WQ, Liu YM, Zou CQ. Responses in Zinc Uptake of Different Mycorrhizal and Non-mycorrhizal Crops to Varied Levels of Phosphorus and Zinc Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:606472. [PMID: 33343606 PMCID: PMC7744350 DOI: 10.3389/fpls.2020.606472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 06/01/2023]
Abstract
Negative effects of high phosphorus (P) application on zinc (Zn) nutrition have been observed in many crops. This study investigated the Zn responses of three typical crops to varied P and Zn applications. A pot experiment was conducted using two mycorrhizal crops (maize and soybean) and one non-mycorrhizal crop (oilseed rape) under three levels of P, two levels of Zn, and two levels of benomyl. Results showed that P application significantly decreased shoot and root Zn concentrations, Zn uptake, and Zn acquisition efficiency (ZnAE) of the three crops irrespective of Zn rate, and that these reductions were greater for maize and soybean than for oilseed rape. Zn application alleviated the P inhibition of Zn uptake in the three crops. The arbuscular mycorrhizal fungi (AMF) colonization of maize and soybean contributed most to the negative effects of increasing P application on Zn uptake, explaining 79-89 and 64-69% of the effect, respectively. For oilseed rape, root dry weight and root Zn concentration explained 90% of the decrease in Zn uptake caused by P application. These results suggest that there is another pathway in addition to the mycorrhizal pathway regulating Zn uptake under mediation by P supply.
Collapse
Affiliation(s)
| | | | | | | | - Chun-Qin Zou
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Pongrac P, Fischer S, Thompson JA, Wright G, White PJ. Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply. FRONTIERS IN PLANT SCIENCE 2020; 10:1645. [PMID: 31998335 PMCID: PMC6962232 DOI: 10.3389/fpls.2019.01645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/21/2019] [Indexed: 05/24/2023]
Abstract
Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas.
Collapse
Affiliation(s)
- Paula Pongrac
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Low and Medium Energy Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sina Fischer
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Gladys Wright
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
| | - Philip J. White
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1172. [PMID: 31616454 PMCID: PMC6775243 DOI: 10.3389/fpls.2019.01172] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/27/2019] [Indexed: 05/16/2023]
Abstract
Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. This review synthesizes recent progress on how plants coordinate the acquisition and signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in these Pi-Zn-Fe interactions with the aim of better understanding of the cross-talk between these macronutrient and micronutrient homeostasis in plants. In addition, identification of genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to understand these processes in arbuscular mycorrhizal plants, the preliminary examination of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been performed at the physiological level and is summarized in this article. In conclusion, the development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway in mycorrhizal plants will be essential for sustainable agriculture all around the world.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoning Fan
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. Int J Mol Sci 2018; 19:ijms19030899. [PMID: 29562647 PMCID: PMC5877760 DOI: 10.3390/ijms19030899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/03/2022] Open
Abstract
Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.
Collapse
|
13
|
Margenat A, Matamoros V, Díez S, Cañameras N, Comas J, Bayona JM. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1140-1148. [PMID: 28511359 DOI: 10.1016/j.scitotenv.2017.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL-1) and 13 (553±1050ngL-1) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants.
Collapse
Affiliation(s)
- Anna Margenat
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| | - Sergi Díez
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Núria Cañameras
- Department of Agri-Food Engineering and Biotechnology, DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - Jordi Comas
- Department of Agri-Food Engineering and Biotechnology, DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - Josep M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
14
|
Mongon J, Chaiwong N, Bouain N, Prom-U-Thai C, Secco D, Rouached H. Phosphorus and Iron Deficiencies Influences Rice Shoot Growth in an Oxygen Dependent Manner: Insight from Upland and Lowland Rice. Int J Mol Sci 2017; 18:E607. [PMID: 28287426 PMCID: PMC5372623 DOI: 10.3390/ijms18030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O₂) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O₂-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O₂ signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes.
Collapse
Affiliation(s)
- Jenjira Mongon
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Montpellier University, 34060 Montpellier, France.
- Bodhivijjalaya College, Srinakharinwirot University, 10110 Bangkok, Thailand.
| | - Nanthana Chaiwong
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Montpellier University, 34060 Montpellier, France.
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand.
| | - Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Montpellier University, 34060 Montpellier, France.
| | - Chanakan Prom-U-Thai
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand.
| | - David Secco
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Montpellier University, 34060 Montpellier, France.
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Montpellier University, 34060 Montpellier, France.
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand.
| |
Collapse
|
15
|
Bouain N, Doumas P, Rouached H. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis. Curr Genomics 2016; 17:308-4. [PMID: 27499680 PMCID: PMC4955032 DOI: 10.2174/1389202917666160331201812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/21/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture.
Collapse
Affiliation(s)
- Nadia Bouain
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Patrick Doumas
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Hatem Rouached
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| |
Collapse
|
16
|
Gupta N, Ram H, Kumar B. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2016. [PMID: 0 DOI: 10.1007/s11157-016-9390-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
17
|
Saenchai C, Bouain N, Kisko M, Prom-u-thai C, Doumas P, Rouached H. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:396. [PMID: 27092147 PMCID: PMC4821852 DOI: 10.3389/fpls.2016.00396] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/14/2016] [Indexed: 05/20/2023]
Abstract
Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants.
Collapse
Affiliation(s)
- Chorpet Saenchai
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientifique – Montpellier UniversityMontpellier, France
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai UniversityChiang Mai, Thailand
| | - Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientifique – Montpellier UniversityMontpellier, France
| | - Mushtak Kisko
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientifique – Montpellier UniversityMontpellier, France
| | - Chanakan Prom-u-thai
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai UniversityChiang Mai, Thailand
| | - Patrick Doumas
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientifique – Montpellier UniversityMontpellier, France
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes Research Unit, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientifique – Montpellier UniversityMontpellier, France
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai UniversityChiang Mai, Thailand
- *Correspondence: Hatem Rouached,
| |
Collapse
|
18
|
Lucini L, Bernardo L. Comparison of proteome response to saline and zinc stress in lettuce. FRONTIERS IN PLANT SCIENCE 2015; 6:240. [PMID: 25932029 PMCID: PMC4399213 DOI: 10.3389/fpls.2015.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 05/05/2023]
Abstract
Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of zinc.
Collapse
Affiliation(s)
- Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro CuorePiacenza, Italy
| | | |
Collapse
|
19
|
Briat JF, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). FRONTIERS IN PLANT SCIENCE 2015; 6:290. [PMID: 25972885 PMCID: PMC4411997 DOI: 10.3389/fpls.2015.00290] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 05/18/2023]
Abstract
Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed.
Collapse
Affiliation(s)
- Jean-François Briat
- *Correspondence: Jean-François Briat, Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université Montpellier 2, SupAgro, Bat 7, 2 Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
20
|
Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5725-41. [PMID: 25080087 DOI: 10.1093/jxb/eru314] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Collapse
Affiliation(s)
- Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Aida Rouached
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Ghazanfar Abbas Khan
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Chedly Abdelly
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yves Poirier
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| |
Collapse
|