1
|
Wang P, Huang X, Jiang C, Yang R, Wu J, Liu Y, Feng S, Wang T. Antibacterial properties of natural products from marine fungi reported between 2012 and 2023: a review. Arch Pharm Res 2024; 47:505-537. [PMID: 38850495 DOI: 10.1007/s12272-024-01500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/04/2024] [Indexed: 06/10/2024]
Abstract
The oceans are rich in diverse microorganisms, animals, and plants. This vast biological complexity is a major source of unique secondary metabolites. In particular, marine fungi are a promising source of compounds with unique structures and potent antibacterial properties. Over the last decade, substantial progress has been made to identify these valuable antibacterial agents. This review summarizes the chemical structures and antibacterial activities of 223 compounds identified between 2012 and 2023. These compounds, effective against various bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus, exhibit strong potential as antibacterial therapeutics. The review also highlights the relevant challenges in transitioning from drug discovery to product commercialization. Emerging technologies such as metagenomics and synthetic biology are proposed as viable solutions. This paper sets the stage for further research on antibacterial compounds derived from marine fungi and advocates a multidisciplinary approach to combat drug-resistant bacteria.
Collapse
Affiliation(s)
- Ping Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaomei Huang
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, 361100, Fujian, China
| | - Chenyuan Jiang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Rushuang Yang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jialing Wu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yinghui Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuangshuang Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Fattel L, Panossian B, Salloum T, Abboud E, Tokajian S. Genomic Features ofVibrio parahaemolyticusfrom Lebanon and Comparison to Globally Diverse Strains by Whole-Genome Sequencing. Foodborne Pathog Dis 2019; 16:778-787. [DOI: 10.1089/fpd.2018.2618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leila Fattel
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Balig Panossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Edmond Abboud
- Clinical Laboratory, The Middle East Institute of Health, Bsalim, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Identification of VPA1327 (vopT) as a Novel Genetic Marker for Detecting Pathogenic Vibrio parahaemolyticus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Dondapati SK, Wüstenhagen DA, Strauch E, Kubick S. Cell-free production of pore forming toxins: Functional analysis of thermostable direct hemolysin from Vibrio parahaemolyticus. Eng Life Sci 2017; 18:140-148. [PMID: 29497355 PMCID: PMC5814925 DOI: 10.1002/elsc.201600259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 01/21/2023] Open
Abstract
The pore forming characteristic of TDH1 and TDH2 variants of thermostable direct hemolysin (TDH), a major toxin involved in the pathogenesis of Vibrio parahaemolyticus, was studied on a planar lipid bilayer painted over individual picoliter cavities containing microelectrodes assembled in a multiarray. Both proteins formed pores upon insertion into the lipid bilayer which was shown as a shift in the conductance from the baseline current. TDH2 protein was able to produce stable currents and the currents were influenced by external factors like concentration, type of salt and voltage. The pore currents were influenced and showed a detectable response in the presence of polymers which makes them suitable for biotechnology applications.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| | - Eckhard Strauch
- Federal Institute for Risk Assessment Department of Biological Safety National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Molluscs Berlin Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| |
Collapse
|