1
|
Castro JT, Brito R, Hojo-Souza NS, Azevedo B, Salazar N, Ferreira CP, Junqueira C, Fernandes AP, Vasconcellos R, Cardoso JM, Aguiar-Soares RDO, Vieira PMA, Carneiro CM, Valiate B, Toledo C, Salazar AM, Caballero O, Lannes-Vieira J, Teixeira SR, Reis AB, Gazzinelli RT. ASP-2/Trans-sialidase chimeric protein induces robust protective immunity in experimental models of Chagas' disease. NPJ Vaccines 2023; 8:81. [PMID: 37258518 DOI: 10.1038/s41541-023-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Immunization with the Amastigote Surface Protein-2 (ASP-2) and Trans-sialidase (TS) antigens either in the form of recombinant protein, encoded in plasmids or human adenovirus 5 (hAd5) confers robust protection against various lineages of Trypanosoma cruzi. Herein we generated a chimeric protein containing the most immunogenic regions for T and B cells from TS and ASP-2 (TRASP) and evaluated its immunogenicity in comparison with our standard protocol of heterologous prime-boost using plasmids and hAd5. Mice immunized with TRASP protein associated to Poly-ICLC (Hiltonol) were highly resistant to challenge with T. cruzi, showing a large decrease in tissue parasitism, parasitemia and no lethality. This protection lasted for at least 3 months after the last boost of immunization, being equivalent to the protection induced by DNA/hAd5 protocol. TRASP induced high levels of T. cruzi-specific antibodies and IFNγ-producing T cells and protection was primarily mediated by CD8+ T cells and IFN-γ. We also evaluated the toxicity, immunogenicity, and efficacy of TRASP and DNA/hAd5 formulations in dogs. Mild collateral effects were detected at the site of vaccine inoculation. While the chimeric protein associated with Poly-ICLC induced high levels of antibodies and CD4+ T cell responses, the DNA/hAd5 induced no antibodies, but a strong CD8+ T cell response. Immunization with either vaccine protected dogs against challenge with T. cruzi. Despite the similar efficacy, we conclude that moving ahead with TRASP together with Hiltonol is advantageous over the DNA/hAd5 vaccine due to pre-existing immunity to the adenovirus vector, as well as the cost-benefit for development and large-scale production.
Collapse
Affiliation(s)
- Julia T Castro
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rory Brito
- Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Natalia S Hojo-Souza
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Bárbara Azevedo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Salazar
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Caroline Junqueira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | | | | | | | - Bruno Valiate
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Cristiane Toledo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Santuza R Teixeira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil.
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil.
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Bunkofske ME, Perumal N, White B, Strauch EM, Tarleton R. Epitopes in the Glycosylphosphatidylinositol Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust but Delayed and Nonprotective CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:420-430. [PMID: 36603035 PMCID: PMC9898211 DOI: 10.4049/jimmunol.2200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi elicits substantial CD8+ T cell responses that disproportionately target epitopes encoded in the large trans-sialidase (TS) gene family. Within the C57BL/6 infection model, a significant proportion (30-40%) of the T. cruzi-specific CD8+ T cell response targets two immunodominant TS epitopes, TSKb18 and TSKb20. However, both TS-specific CD8+ T cell responses are dispensable for immune control, and TS-based vaccines have no demonstrable impact on parasite persistence, a determinant of disease. Besides TS, the specificity and protective capacity of CD8+ T cells that mediate immune control of T. cruzi infection are unknown. With the goal of identifying alternative CD8+ T cell targets, we designed and screened a representative set of genome-wide, in silico-predicted epitopes. Our screen identified a previously uncharacterized, to our knowledge, T cell epitope MUCKb25, found within mucin family proteins, the third most expanded large gene family in T. cruzi. The MUCKb25-specific response was characterized by delayed kinetics, relative to TS-specific responses, and extensive cross-reactivity with a large number of endogenous epitope variants. Similar to TS-specific responses, the MUCKb25 response was dispensable for control of the infection, and vaccination to generate MUCK-specific CD8+ T cells failed to confer protection. The lack of protection by MUCK vaccination was partly attributed to the fact that MUCKb25-specific T cells exhibit limited recognition of T. cruzi-infected host cells. Overall, these results indicate that the CD8+ T cell compartment in many T. cruzi-infected mice is occupied by cells with minimal apparent effector potential.
Collapse
Affiliation(s)
- Molly E. Bunkofske
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Natasha Perumal
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Rick Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Moraschi BF, Noronha IH, Ferreira CP, Cariste LM, Monteiro CB, Denapoli P, Vrechi T, Pereira GJS, Gazzinelli RT, Lannes-Vieira J, Rodrigues MM, Bortoluci KR, Vasconcelos JRC. Rapamycin Improves the Response of Effector and Memory CD8 + T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:676183. [PMID: 34123875 PMCID: PMC8191465 DOI: 10.3389/fcimb.2021.676183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Deficiency in memory formation and increased immunosenescence are pivotal features of Trypanosoma cruzi infection proposed to play a role in parasite persistence and disease development. The vaccination protocol that consists in a prime with plasmid DNA followed by the boost with a deficient recombinant human adenovirus type 5, both carrying the ASP2 gene of T. cruzi, is a powerful strategy to elicit effector memory CD8+ T-cells against this parasite. In virus infections, the inhibition of mTOR, a kinase involved in several biological processes, improves the response of memory CD8+ T-cells. Therefore, our aim was to assess the role of rapamycin, the pharmacological inhibitor of mTOR, in CD8+ T response against T. cruzi induced by heterologous prime-boost vaccine. For this purpose, C57BL/6 or A/Sn mice were immunized and daily treated with rapamycin for 34 days. CD8+ T-cells response was evaluated by immunophenotyping, intracellular staining, ELISpot assay and in vivo cytotoxicity. In comparison with vehicle-injection, rapamycin administration during immunization enhanced the frequency of ASP2-specific CD8+ T-cells and the percentage of the polyfunctional population, which degranulated (CD107a+) and secreted both interferon gamma (IFNγ) and tumor necrosis factor (TNF). The beneficial effects were long-lasting and could be detected 95 days after priming. Moreover, the effects were detected in mice immunized with ten-fold lower doses of plasmid/adenovirus. Additionally, the highly susceptible to T. cruzi infection A/Sn mice, when immunized with low vaccine doses, treated with rapamycin, and challenged with trypomastigote forms of the Y strain showed a survival rate of 100%, compared with 42% in vehicle-injected group. Trying to shed light on the biological mechanisms involved in these beneficial effects on CD8+ T-cells by mTOR inhibition after immunization, we showed that in vivo proliferation was higher after rapamycin treatment compared with vehicle-injected group. Taken together, our data provide a new approach to vaccine development against intracellular parasites, placing the mTOR inhibitor rapamycin as an adjuvant to improve effective CD8+ T-cell response.
Collapse
Affiliation(s)
- Barbara Ferri Moraschi
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaú Henrique Noronha
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camila Pontes Ferreira
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Caroline B. Monteiro
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Priscila Denapoli
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Talita Vrechi
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Ricardo T. Gazzinelli
- René Rachou Research Center, Fiocruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joseli Lannes-Vieira
- Laboratoy of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Maurício M. Rodrigues
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karina R. Bortoluci
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
4
|
Therapeutic effects of vaccine derived from amastigote surface protein-2 (ASP-2) against Chagas disease in mouse liver. Cytokine 2018; 113:285-290. [PMID: 30037707 DOI: 10.1016/j.cyto.2018.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
This study investigated the efficacy of the vaccine in liver of mice infected with the Trypanosoma cruzi (T. cruzi) and immunized with AdASP-2. For this purpose, histopathological analysis and gene expression of COX-2, TNF-alpha, TNFR, iNOS, cytochrome C, caspase-3, TLR4, IL-6 and IL10 were evaluated. The following groups were used in this study: Group 1 - Control Group (CTRL) animals received AdβGal vehicle; Group 2 - Infected Group (TC) animals were infected with T. cruzi; Group 3 - Immunized Group (AdASP-2): animals were immunized by AdASP-2 vaccine; Group 4 - Immunized and Infected Group (AdASP-2+TC) animals were infected with T. cruzi and immunized by AdSP-2 vaccine. A significant decrease of amastigote nests was noticed in the group of animals that were immunized with AdASP-2 and infected on the same day. COX-2 and TNF-alpha gene expressions increased in TC group, whereas TNF-alpha decreased in the TC+AdASP-2 group. TNFR expression was high in AdASP-2+TC group. iNOS expression was high for all experimental groups whereas cytochrome C decreased for all experimental groups. Caspase 3 increased in TC and TC+AdASP-2 groups. The gene expression of TLR4 and IL-10 showed an increase in AdASP-2+TC group. Finally, hepatic fibrosis was noticed to TC and AdASP-2 + TC groups. Taken together, our results demonstrated that vaccination with AdASP-2 was effective against the acute phase of experimental Chagas disease as a result of a more powerful and rapid immune response closely related to expression of some inflammatory genes, such as iNOS, TNF-alpha, TLR 4, and IL-10.
Collapse
|
5
|
Status of vaccine research and development of vaccines for Chagas disease. Vaccine 2016; 34:2996-3000. [DOI: 10.1016/j.vaccine.2016.03.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
|
6
|
Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, Previato JO, Mendonça-Previato L. Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host. Front Microbiol 2016; 7:698. [PMID: 27242722 PMCID: PMC4862976 DOI: 10.3389/fmicb.2016.00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/26/2016] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia). To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS). Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialoglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Leonardo M da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Vanessa A da Silva
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Célio G Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection. Antimicrob Agents Chemother 2015; 59:7564-70. [PMID: 26416857 DOI: 10.1128/aac.01294-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/19/2015] [Indexed: 01/17/2023] Open
Abstract
The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD.
Collapse
|
8
|
Bonney KM, Engman DM. Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1537-47. [PMID: 25857229 DOI: 10.1016/j.ajpath.2014.12.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of individuals infected with the protozoan parasite Trypanosoma cruzi. Since the discovery of T. cruzi by Carlos Chagas >100 years ago, much has been learned about Chagas disease pathogenesis; however, the outcome of T. cruzi infection is highly variable and difficult to predict. Many mechanisms have been proposed to promote tissue inflammation, but the determinants and the relative importance of each have yet to be fully elucidated. The notion that some factor other than the parasite significantly contributes to the development of myocarditis was hypothesized by the first physician-scientists who noted the conspicuous absence of parasites in the hearts of those who succumbed to Chagas disease. One of these factors-autoimmunity-has been extensively studied for more than half a century. Although questions regarding the functional role of autoimmunity in the pathogenesis of Chagas disease remain unanswered, the development of autoimmune responses during infection clearly occurs in some individuals, and the implications that this autoimmunity may be pathogenic are significant. In this review, we summarize what is known about the pathogenesis of Chagas heart disease and conclude with a view of the future of Chagas disease diagnosis, pathogenesis, therapy, and prevention, emphasizing recent advances in these areas that aid in the management of Chagas disease.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - David M Engman
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois; Department of Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois.
| |
Collapse
|