1
|
Yan Z, Hu Y, Zhang Y, Pu Q, Chu L, Liu J. Effects of endoplasmic reticulum stress‑mediated CREB3L1 on apoptosis of glioma cells. Mol Clin Oncol 2022; 16:83. [DOI: 10.3892/mco.2022.2516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhao Yan
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yaxin Hu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yiwei Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Pu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liangzhao Chu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells. GeroScience 2021; 43:2067-2085. [PMID: 34089175 DOI: 10.1007/s11357-021-00395-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
Aging is associated with progressive loss of cellular homeostasis resulting from intrinsic and extrinsic challenges. Lack of a carefully designed, well-characterized, precise, translational experimental model is a major limitation to understanding the cellular perturbations that characterize aging. Here, we tested the feasibility of primary fibroblasts isolated from nonhuman primates (baboons) as a model of cellular resilience in response to homeostatic challenge. Using a real-time live-cell imaging system, we precisely defined a protocol for testing effects of prooxidant compounds (e.g., hydrogen peroxide (H2O2), paraquat), thapsigargin, dexamethasone, and a low glucose environment on cell proliferation in fibroblasts derived from baboons across the life course (n = 11/sex). Linear regression analysis indicated that donor age significantly reduced the ability of cells to proliferate following exposure to H2O2 (50 and 100 µM) and paraquat (100 and 200 µM) challenges in cells from males (6.4-21.3 years; average lifespan 21 years) but not cells from females (4.3-15.9 years). Inhibitory effects of thapsigargin on cell proliferation were dependent on challenge duration (2 vs 24 h) and concentration (0.1 and 1 µM). Cells from older females (14.4-15.9 years) exhibited greater resilience to thapsigargin (1 µM; 24 h) and dexamethasone (500 µM) challenges than did those from younger females (4.3-6.7 years). The cell proliferation response to low glucose (1 mM) was reduced with age in both sexes. These data indicate that donor's chronological age and sex are important variables in determining fibroblast responses to metabolite and other challenges.
Collapse
|
3
|
Jiang H, Liu J, Fan C, Wang J, Li W. lncRNAS56464.1 as a ceRNA promotes the proliferation of fibroblast‑like synoviocytes in experimental arthritis via the Wnt signaling pathway and sponges miR‑152‑3p. Int J Mol Med 2021; 47:17. [PMID: 33448322 PMCID: PMC7834957 DOI: 10.3892/ijmm.2021.4850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that occurs in approximately 1.0% of the general population. In RA patients, physical disability and joint damage are the major prognostic factors, which are associated with a reduction in the quality of life and early mortality. At present, the exact molecular mechanism of RA remains elusive. Long noncoding RNAs (lncRNAs) have been revealed to play a regulatory role in the pathogenesis of RA. To reveal the function of lncRNAs in rheumatoid arthritis, lncRNAS56464.1 was screened to verify its targeting of the microRNA (miR)-152-3p/Wnt pathway and its effect on the proliferation of fibroblast-like synoviocytes (FLS). In the present study, based on the competing endogenous RNA (ceRNA) theory, siRNA was designed for transfection into FLS to calculate the lncRNAS56464.1 interference efficiency and then the effect of lncRNAS56464.1 interference on FLS proliferation was detected by MTT assay. Then, lncRNAS56464.1 targeting of the miR-152-3p/Wnt pathway was detected by a dual-luciferase reporter assay. In addition, RT-qPCR, immunofluorescence and western blotting techniques were employed to detect the expression of lncRNAS56464.1, miR-152-3p and some key genes of the Wnt signaling pathway in FLS after lncRNAS56464.1 interference. The results revealed that lncRNAS56464.1 could combine with miR-152-3p and promoted the proliferation of FLS. In addition, lncRNAS56464.1 interference could not only decrease the proliferation of FLS and the expression of Wnt1, β-catenin, c-Myc, cyclin D1, and p-GSK-3β/GSK-3β, but it also increased the expression of SFRP4. The present data indicated that lncRNAS56464.1 could target the miR-152-3p/Wnt pathway to induce synovial cell proliferation and then participate in the pathogenesis of RA.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jing Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Weiping Li
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
4
|
Zhang Q, Liu J, Zhang M, Wei S, Li R, Gao Y, Peng W, Wu C. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 2019; 9:biom9120795. [PMID: 31795133 PMCID: PMC6995542 DOI: 10.3390/biom9120795] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a known chronic autoimmune disease can cause joint deformity and even loss of joint function. Fibroblast-like synoviocytes (FLS), one of the main cell types in synovial tissues of RA patients, are key effector cells in the development of RA and are considered as promising therapeutic targets for treating RA. Herbal medicines are precious resources for finding novel agents for treating various diseases including RA. It is reported that induction of apoptosis in FLS is an important mechanism for the herbal medicines to treat RA. Consequently, this paper reviewed the current available references on pro-apoptotic effects of herbal medicines on FLS and summarized the related possible signal pathways. Taken together, the main related signal pathways are concluded as death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other reported pathways such as janus kinase/signal transducers and activators of transcription (JAK-STAT) signal pathway. Understanding the apoptosis induction pathways in FLS of these herbal medicines will not only help clear molecular mechanisms of herbal medicines for treating RA but also be beneficial for finding novel candidate therapeutic drugs from natural herbal medicines. Thus, we expect the present review will highlight the importance of herbal medicines and its components for treating RA via induction of apoptosis in FLS, and provide some directions for the future development of these mentioned herbal medicines as anti-RA drugs in clinical.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Shujun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Yongxiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| |
Collapse
|
5
|
Xia ZB, Meng FR, Fang YX, Wu X, Zhang CW, Liu Y, Liu D, Li GQ, Feng FB, Qiu HY. Inhibition of NF-κB signaling pathway induces apoptosis and suppresses proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthritis. Medicine (Baltimore) 2018; 97:e10920. [PMID: 29879032 PMCID: PMC5999456 DOI: 10.1097/md.0000000000010920] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is the most common inflammatory arthritis and is a major cause of disability. The nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway has been reported to be involved in the pathogenesis of RA with unclear mechanisms. Therefore, this study aims to explore the effect of NF-κB pathway on proliferation, apoptosis, and angiogenesis of human fibroblast-like synovial cells (HFLS) in RA. METHODS Normal HFLS and RA-HFLS were selected as the normal and control groups, respectively. RA-HFLS were treated by BAY11-7082 (an inhibitor of NF-κB) in different concentrations, namely 2.5 μmol/L BAY11-7082, 5 μmol/LBAY11-7082 and 10 μmol/L BAY11-7082. MTT assay was employed to detect cell proliferation. Cell apoptosis was determined by flow cytometry at 24, 48, and 72 hours after culture. Western blot analysis was employed to detect the expressions of NF-κB, angiogenesis-related factors (VEGF, Ang1, and Ang2). RESULTS Initially, we found that BAY11-7082 inhibited NF-κB expression in a concentration-dependent manner. According to the findings of MTT assay and flow cytometry, we understood that RA-HFLS treated by BAY11-7082 (an inhibitor of NF-κB), the inhibition of NF-κB pathway, suppressed RA-HFLS proliferation and induced RA-HFLS apoptosis in a concentration and time-dependent manner. Furthermore, RA-HFLS treated by BAY11-7082 presented decreased VEGF, Ang1 and Ang2 expressions in a concentration-dependent manner. CONCLUSION The study concluded that inhibition of NF-κB pathway induced cell apoptosis and suppressed proliferation and angiogenesis of RA-HFLS, which could serve as a novel target in the treatment of RA.
Collapse
Affiliation(s)
- Zhong-Bin Xia
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
| | - Fan-Ru Meng
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
- Clinical Medical College, Dalian Medical University, Dalian
| | - Yu-Xuan Fang
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
- Clinical Medical College, Dalian Medical University, Dalian
| | - Xia Wu
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
- Clinical Medical College, Dalian Medical University, Dalian
| | - Chun-Wang Zhang
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
- Clinical Medical College, Dalian Medical University, Dalian
| | - Ying Liu
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
- Clinical Medical College, Dalian Medical University, Dalian
| | - Dan Liu
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China
| | - Guo-Qing Li
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
| | - Fan-Bo Feng
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
| | - Hai-Yang Qiu
- Department of Rheumatology, Clinical Medical College of Yangzhou University (Northern Jiangsu People's Hospital Affiliated to Yangzhou University), Yangzhou
| |
Collapse
|
6
|
Dimacrolide Sesquiterpene Pyridine Alkaloids from the Stems of Tripterygium regelii. Molecules 2016; 21:molecules21091146. [PMID: 27589701 PMCID: PMC6273108 DOI: 10.3390/molecules21091146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023] Open
Abstract
Two new dimacrolide sesquiterpene pyridine alkaloids (DMSPAs), dimacroregelines A (1) and B (2), were isolated from the stems of Tripterygium regelii. The structures of both compounds were characterized by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. Compounds 1 and 2 are two rare DMSPAs possessing unique 2-(3′-carboxybutyl)-3-furanoic acid units forming the second macrocyclic ring, representing the first example of DMSPAs bearing an extra furan ring in their second macrocyclic ring system. Compound 2 showed inhibitory effects on the proliferation of human rheumatoid arthritis synovial fibroblast cell (MH7A) at a concentration of 20 μM.
Collapse
|