1
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
2
|
Moshfeghi E, Yilmazer Y, Dogan S, Aydin T, Findikli N, Ozbek T. Investigation of the effect of serotonin-activated semen washing medium on sperm motility at the molecular level: a pilot study. ZYGOTE 2024; 32:396-404. [PMID: 39523888 DOI: 10.1017/s0967199424000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In Assisted Reproductive Technologies (ART), efficient sperm preparation is vital for successful fertilization, with washing media enhancing the process. This pilot study examines the molecular-level impact of a new serotonin-containing sperm-washing medium (Prototype) on sperm motility and ROS metabolism, comparing it with commercially available media (Origio and Irvine). Semen samples from thirty-one individuals underwent preparation using the swim-up method post-semen analysis. Each sample was separately washed with the Prototype, Origio and Irvine mediums. ROS formation was determined through flow cytometric, and AT2R and PRDX2 protein levels, associated with sperm motility, were assessed via Western blot. Statistical evaluation compared the findings among the three outlined media. Significant differences were found among three washing media in terms of total and progressive motility. The Prototype medium showed the highest increase in both total (66%) and progressive motility (59%), while the control group exhibited the lowest increases (41% and 27.7%, respectively). Regarding ROS levels, the prototype (11.5%) and Origio (10.7%) groups demonstrated a notable decrease, contrasting with Irvine (25.8%). Molecular assessment revealed a significant elevation in AT2R protein levels in the prototype medium (59%), compared to other media. Additionally, an increase in PRDX2 protein levels was observed in the prototype medium, although this didn't reach statistical significance. Serotonin-activated washing media for sperm preparation can be a suitable choice for selecting high-quality sperm in ART. A broader molecular analysis with a larger sample size is required to explore the mechanisms and effectiveness of using a serotonin-containing sperm-washing medium in routine ART.
Collapse
Affiliation(s)
- Elnaz Moshfeghi
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Sinem Dogan
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Turgut Aydin
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | | | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Elkhawagah AR, Ricci A, Bertero A, Poletto ML, Nervo T, Donato GG, Vincenti L, Martino NA. Supplementation with MitoTEMPO before cryopreservation improves sperm quality and fertility potential of Piedmontese beef bull semen. Front Vet Sci 2024; 11:1376057. [PMID: 38812559 PMCID: PMC11135289 DOI: 10.3389/fvets.2024.1376057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this study was to improve the quality of frozen-thawed Piedmontese bull semen by incorporating MitoTEMPO (MT) in extended semen before cryopreservation. Semen was collected from 4 fertile bulls, using an artificial vagina, once weekly for 6 consecutive weeks. Semen samples were pooled, diluted with Bullxcell® extender, and supplemented with different concentrations of MT (0 as control, 5, 10, 20, 40, and 80 μM) before cooling, equilibration, and freezing procedures. The frozen-thawed semen was assessed for motility, vitality, acrosome intactness, plasma membrane integrity, DNA integrity, apoptosis, mitochondrial membrane potential, intracellular ROS level and in vitro fertilizing capability. The results showed that MT at concentrations of 10, 20, and 40 μM improved the total, progressive, and rapid motility directly after thawing while, at the highest tested concentration (80 μM), it decreased the progressive and rapid motility after 1, 2, and 3 h of incubation. The sperm kinetics including STR and LIN were noticeably increased at concentrations of 10, 20, and 40 μM directly after thawing (0 h), whereas the MT effect was variable on the other sperm kinetics during the different incubation periods. MitoTEMPO improved the sperm vitality at all tested concentrations, while the acrosomal and DNA integrity were improved at 20 μM and the mitochondrial membrane potentials was increased at 80 μM. The cleavage and blastocyst formation rates were significantly increased by using semen treated with 20 μM MT compared with controls. These findings suggest a potential use of MT mainly at a concentration of 20 μM as an additive in the cryopreservation media of bull semen to improve sperm quality.
Collapse
Affiliation(s)
- Ahmed R. Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | - Tiziana Nervo
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Gian Guido Donato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
5
|
Asadpour R, Aminirad M, Rahbar M, Hajibemani A, Rezaei Topraggaleh T. Effects of hyaluronic acid on sperm parameters, mitochondrial function and apoptosis of spermatozoa in Simmental bulls with good and poor freezing ability. J Anim Physiol Anim Nutr (Berl) 2024; 108:383-394. [PMID: 37899704 DOI: 10.1111/jpn.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Bulls with varying freezability exhibit substantial variation in semen characteristics after cryopreservation. Sperm freezability is positively correlated with membrane cholesterol content, membrane integrity, mitochondrial activity and antioxidant content. The purpose of this study was to determine the optimal concentration of hyaluronic acid (HA) in bull sperm with different cryotolerances. Simmental bulls (n = 10) semen samples were taken and categorized based on their progressive motility (PM) after freeze-thawing: Group I, consisting of bulls (n = 5) with progressive sperm motility ≥45%, was considered good freezability ejaculates (GF), and Group II, including bulls (n = 5) with progressive sperm motility ≤30%, was considered poor freezability ejaculates (PF) bulls. Semen samples were diluted with a Tris-egg-yolk-glycerol (TEYG) extender containing various concentrations of HA: without HA (control), 1 mM HA, 2 mM HA and 4 mM HA. After the freeze-thaw process, sperm kinematics, plasma membrane and acrosome integrity, mitochondrial activity and apoptotic status were evaluated. The addition of 1 mM HA to the diluent of bulls with GF increased PM and linearity (LIN) compared to the control group (p < 0.05). Normal morphology was improved after thawing in the samples treated with 1 and 2 mM HA in the GF and PF bulls respectively. The membrane and acrosome integrity of GF bulls treated with 1 mM HA was significantly (p < 0.05) greater than that of the control groups. Adding 1 mM HA to the extender of bulls with GF and PF improved the proportion of viable cells compared with the highest concentration (4 mM) of HA. The mitochondrial activity of PF bulls treated with 1 and 2 mM HA was significantly (p < 0.05) greater than that of the controls and 4 mM HA. Finally, it can be concluded that adding low doses of HA (1 mM) to the TEYG extender of GF and PF bulls ameliorated the post-thaw semen quality.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Muhamadreza Aminirad
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abolfazl Hajibemani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Archana SS, Swathi D, Ramya L, Heena HS, Krishnappa B, Binsila BK, Rajendran D, Selvaraju S. Relationship among seminal antigenicity, antioxidant status and metabolically active sperm from Holstein-Friesian ( Bos taurus) bulls. Syst Biol Reprod Med 2023; 69:366-378. [PMID: 37225677 DOI: 10.1080/19396368.2023.2198070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 05/26/2023]
Abstract
Sperm antigenicity has been implicated as a regulatory factor for acquiring fertilizing competence in the female reproductive tract. Overt immune response against the sperm proteins leads to idiopathic infertility. Hence, the aim of the study was to evaluate the influence of the auto-antigenic potential of sperm on the antioxidant status, metabolic activities and reactive oxygen species (ROS) in bovine. Semen from Holstein-Friesian bulls (n = 15) was collected and classified into higher (HA, n = 8) and lower (LA, n = 7) antigenic groups based on micro-titer agglutination assay. The neat semen was subjected to the evaluation of bacterial load, leukocyte count, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipid peroxidation (LPO) levels. Antioxidant activities in seminal plasma and intracellular ROS levels in the post-thawed sperm were estimated. The number of leukocytes was lower (p < .05) in the HA than the LA semen. The percentage of metabolically active sperm was higher (p < .05) in HA than the LA group. The activities of total non-enzymatic antioxidant, superoxide dismutase (SOD) and catalase (CAT) were higher (p < .05) while glutathione peroxidase activity was lower (p < .05) in the seminal plasma of LA group. The LPO levels of neat sperm and the percentage sperm positive for intracellular ROS in the cryopreserved sample were lower (p < .05) in the HA group. Auto-antigenic levels were positively correlated with the percentage of metabolically active sperm (r = 0.73, p < .01). However, the seminal auto-antigenicity was negatively (p < .05) correlated with the levels of SOD (r=-0.66), CAT (r=-0.72), LPO (r=-0.602) and intracellular ROS (r=-0.835). The findings were represented in graphical abstract. It is inferred that the higher auto-antigenic levels protect the quality of bovine semen by promoting sperm metabolism and lowering ROS and LPO levels.
Collapse
Affiliation(s)
- Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- Department of Biochemistry, Jain University, Bengaluru, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Hulliyurdurga Shameeulla Heena
- Feed Resources and Informatics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Duraisamy Rajendran
- Feed Resources and Informatics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
7
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
8
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Mańkowska A, Gilun P, Zasiadczyk Ł, Sobiech P, Fraser L. Expression of TXNRD1, HSPA4L and ATP1B1 Genes Associated with the Freezability of Boar Sperm. Int J Mol Sci 2022; 23:9320. [PMID: 36012584 PMCID: PMC9409117 DOI: 10.3390/ijms23169320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cryopreservation is associated with increased oxidative stress, which is responsible for sperm damage. We analyzed the effect of cryopreservation on mRNA and protein expression of thioredoxin reductase 1 (TXNRD1), heat shock protein family A (HSP 70) member 4 like (HSPA4L) and sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) genes in boar sperm with different freezability. Boars were classified as having good and poor semen freezability (GSF and PSF, respectively), according to the assessment of post-thaw sperm motility. Total RNA was isolated from fresh pre-freeze (PF) and frozen-thawed (FT) sperm from five boars of the GSF and PSF groups, respectively. Quantification of TXNRD1, HSPA4L and ATP1B1 gene expression was performed by RT-qPCR analysis. Proteins extracted from sperm were subjected to Western blotting and SDS-PAGE analyses. Poor freezability ejaculates were characterized by significantly higher relative mRNA expression levels of TXNRD1 and HSPA4L in FT sperm compared with the fresh PF sperm. Furthermore, the relative mRNA expression level of ATP1B1 was significantly higher in the fresh PF sperm of the GSF group. Western blotting analysis revealed significantly higher relative expression of TXNRD1 protein in the fresh PF sperm of the GSF group, while HSPA4L protein expression was markedly increased in FT sperm of the PSF group. Electrophoretic and densitometric analyses revealed a higher number of proteins in the fresh PF and FT sperm of the PSF and GSF groups, respectively. The results of this study indicate that ATP1B1 mRNA expression in the fresh PF sperm is a promising cryotolerance marker, while the variations of TXNRD1 and HSPA4L protein expression in the fresh PF or FT sperm provide useful information that may help to elucidate their biological significance in cryo-damage.
Collapse
Affiliation(s)
- Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Bydgoska 7, 10-243 Olsztyn, Poland
| | - Łukasz Zasiadczyk
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Sobiech
- Internal Disease Unit, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Karam ZM, Baba Salari M, Anjom Shoaa A, Dehghan Kouhestani S, Bahram Nejad A, Ashourzadeh S, Zangouyee MR, Bazrafshani MR. Impact of oxidative stress SNPs on sperm DNA damage and male infertility in a south-east Iranian population. Reprod Fertil Dev 2022; 34:633-643. [PMID: 35361312 DOI: 10.1071/rd21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
AIM We examined four single nucleotide polymorphisms in four antioxidant genes (PON1 , CAT , GPx1 and SOD2 ) in 100 infertility cases and 100 controls from an Iranian population-based case-control study to confirm the assumption that polymorphisms in oxidative stress genes increase the risk of sperm DNA damage and idiopathic male infertility. METHODS Restriction fragment length polymorphism and tetra-primer amplification refractory mutation system PCR were used to identify genotypes. Sperm DNA damage was assessed using the Sperm Chromatin Dispersion test (Halo Sperm), and the total antioxidant capacity of seminal fluid was determined using the FRAP assay. KEY RESULTS Our findings demonstrated that alleles Arg-PON1 (rs662) and Ala-MnSOD (rs4880) variant genotypes were considerably linked with a higher risk of male infertility. CONCLUSIONS Linear regression analysis revealed that those with the PON1 Gln192Arg or SOD2 Val16Ala variants have significantly higher levels of sperm DNA fragmentation and lower levels of the total antioxidant capacity in seminal fluid. IMPLICATIONS These findings suggest that genetic differences in antioxidant genes may be linked to oxidative stress, sperm DNA damage, and idiopathic male infertility.
Collapse
Affiliation(s)
- Zahra Miri Karam
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Baba Salari
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Anjom Shoaa
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somaye Dehghan Kouhestani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Moddares University, Tehran, Iran; and Dr. Bazrafshani's Medical Genetic Laboratory, Kerman, Iran
| | | | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Moahammad Reza Zangouyee
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Bazrafshani
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Centre for Integrated Genomic Medical Research (CIGMR), University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation. Molecules 2022; 27:molecules27031144. [PMID: 35164407 PMCID: PMC8838050 DOI: 10.3390/molecules27031144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
It is important to inhibit oxidative stress to maintain sperm motility during cryopreservation. The present study was performed to investigate the effects of supplementing oligomeric proanthocyanidins (OPC) and bamboo leaf flavonoids (BLF) or their combination as an extender for Simmental bull semen freezing. OPC, BLF, or their combination were added to the frozen diluent of bovine semen. Afterwards, computer-assisted semen analysis (CASA), detection of membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-PX, MDA, and ROS were conducted. The results showed that adding 50 mg/L OPC or 4 mg/L BLF could improve the quality of frozen sperm. Compared with 50 mg/L OPC alone, the combination of 50mg/L OPC and 2 mg/L BLF significantly increased the kinematic parameters of sperm, and sperm CAT, GSH-PX and SOD levels (p < 0.05), whereas the MDA of sperm was decreased (p < 0.05). These results indicated that compared to the addition of 50 mg/L OPC alone, a combination of 50 mg/L OPC and 2 mg/L BLF could further improve the quality of frozen semen. The results could provide theoretical data support for the development of a new protective agent and are significant for the cryopreservation of bovine semen in the future.
Collapse
|
12
|
Dutta S, Sengupta P, Roychoudhury S, Chakravarthi S, Wang CW, Slama P. Antioxidant Paradox in Male Infertility: 'A Blind Eye' on Inflammation. Antioxidants (Basel) 2022; 11:167. [PMID: 35052671 PMCID: PMC8772926 DOI: 10.3390/antiox11010167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
| | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | | | - Srikumar Chakravarthi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Chee Woon Wang
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
13
|
Role of Antioxidants in Cooled Liquid Storage of Mammal Spermatozoa. Antioxidants (Basel) 2021; 10:antiox10071096. [PMID: 34356329 PMCID: PMC8301105 DOI: 10.3390/antiox10071096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cooled preservation of semen is usually associated with artificial insemination and genetic improvement programs in livestock species. Several studies have reported an increase in reactive oxidative species and a decrease in antioxidant substances and sperm quality parameters during long-term semen storage at refrigerated temperatures. The supplementation of antioxidants in extenders before refrigeration could reduce this detrimental effect. Various antioxidants have been tested, both enzymatic, such as superoxide dismutase and catalase, and non-enzymatic, such as reduced glutathione, vitamins E and C and melatonin. However, the problem of oxidative stress in semen storage has not been fully resolved. The effects of antioxidants for semen-cooled storage have not been reviewed in depth. Therefore, the objective of the present study was to review the efficiency of the supplementation of antioxidants in the extender during cooled storage of semen in livestock species.
Collapse
|
14
|
The Effects of Antioxidants Provided with Feed on Certain Quality Parameters of Bull Semen Under Heat Stress Conditions. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the current research was to assess the effects of the feed additive made of lyophilised melon juice (source of superoxide dismutase, SOD) and inactivated live Saccharomyces cerevisiae (strain R397) cells added to the feed via the product containing high levels of organically bound selenium (source of selenium-dependant glutathione peroxidase, Se-GPx) on the semen quality of bulls in heat stress conditions. The 15 bulls chosen for the experiment were assigned to three equal groups (control –group C; treated group M, given the source of SOD; and group A, treated with the source of Se-GPx). The research was conducted in summer. The activities of SOD and Se-GPx in seminal plasma were determined spectrophotometrically. Computer-assisted semen analysis was done to determine the sperm counts, motility and velocity. The temperature and humidity were recorded with a digital data logger.
The average SOD activity in the control bulls was significantly lower than in M (p<0.001) and A (p<0.001), whilst the average activities in the treated groups did not differ significantly (p=0.784). Higher average SOD activity compared to the control in the treated groups showed that both feed additives increased the antioxidative capacity of the seminal fluid. The average GPx activity in the control was significantly lower than in groups A (p=0.001) and M (p=0.005), whilst the two treatments did not lead to significantly different results (p=0.701). The analysis of relations between the activity of each enzyme and sperm motility and progressive motility in each of the bulls failed to detect a significant correlation. The analysis of the relation between THI (temperature-humidity index) and the activity of the antioxidative enzymes revealed that the increase in THI coincided with the decrease in the SOD activity in the control group, but with its increase in the treated groups (p>0.05). In all of the three groups with the increase in THI there was an increase in GPx activity (p>0.05). It can be concluded that in all of the three groups of bulls there was an increase in the activity of both enzymes in the seminal plasma, but the increase was significantly lower in the control. Thus, the antioxidative capacity of the seminal plasma of untreated bulls was proven to be lower in comparison with those of the treated animals.
Collapse
|
15
|
Cheng L, Sun P, Xie X, Sun D, Zhou Q, Yang S, Xie Q, Zhou X. Hepatitis B virus surface protein induces oxidative stress by increasing peroxides and inhibiting antioxidant defences in human spermatozoa. Reprod Fertil Dev 2020; 32:1180-1189. [PMID: 32998796 DOI: 10.1071/rd20130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection may affect sperm motility in patients with HBV. HBV surface protein (HBs) decreases mitochondrial membrane potential, impairs motility and induces apoptotic-like changes in human spermatozoa. However, little is known about how human spermatozoa respond to reactive oxygen species (ROS; mainly peroxides) induced by HBs. In this study, HBs induced supraphysiological ROS levels in human spermatozoa and reduced the formation of 2-cell embryos (obtained from hamster oocytes and human spermatozoa). HBs induced a pre-apoptotic status in human spermatozoa, as well as antioxidant defences by increasing glutathione peroxidase 4 (GPX4) and peroxiredoxin 5 (PRDX5) levels. These results highlight the molecular mechanism responsible for the oxidative stress in human spermatozoa exposed to HBV and the antioxidant defence response involving GPX4 and PRDX5.
Collapse
Affiliation(s)
- Lin Cheng
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoling Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Dongmei Sun
- Shenzhen Longgang District Maternity & Child Healthcare Hospital, Shenzhen 518172, PR China
| | - Qi Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Shaozhe Yang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Qingdong Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China; and Corresponding author.
| |
Collapse
|
16
|
Otuechere CA, Adewuyi A, Adebayo OL, Yawson E, Kabiawu O, Al-Rashed S, Okubio B, Beshbishy AM, Batiha GES. Histomorphological and Redox Delineations in the Testis and Epididymis of Albino Rats Fed with Green-Synthesized Cellulose. BIOLOGY 2020; 9:biology9090246. [PMID: 32854280 PMCID: PMC7564467 DOI: 10.3390/biology9090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC on the antioxidant status and histomorphology of the testes and epididymis were studied. GSC had no effects on organ weights and organosomatic indices. In the testes, GSC caused nonsignificant changes in superoxide dismutase, catalase, reduced glutathione and nitric oxide levels, whereas it significantly decreased glutathione peroxidase and malondialdehyde levels. In the epididymis, GSC significantly decreased superoxide dismutase and nitric oxide levels, but caused a significant increase in glutathione peroxidase and reduced glutathione levels. Furthermore, at ×200 magnification, testicular morphology appeared normal at all doses, however, extravasation of the germinal epithelium of the epididymis was observed at doses of 200 and 400 mg/kg GSC. Conversely, at ×400 magnification, spermatogenic arrest (testes) and chromatolytic alterations (epididymis) were observed at the higher doses (200 and 400 mg/kg GSC). This study reports on the effect of green-synthesized cellulose on testicular and epididymal histology and redox status and further extends the frontiers of research on cellulose.
Collapse
Affiliation(s)
- Chiagoziem A. Otuechere
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
- Correspondence:
| | - Adewale Adewuyi
- Department of Chemical Sciences, Redeemer’s University, Ede, Osun State 232102, Nigeria;
| | - Olusegun L. Adebayo
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Emmanuel Yawson
- Department of Anatomy, Redeemer’s University, Ede, Osun State 232102, Nigeria;
| | - Omolara Kabiawu
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Blessing Okubio
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Amany M. Beshbishy
- National Research Center for Protozoan Disease, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt;
| |
Collapse
|
17
|
Kamiński P, Baszyński J, Jerzak I, Kavanagh BP, Nowacka-Chiari E, Polanin M, Szymański M, Woźniak A, Kozera W. External and Genetic Conditions Determining Male Infertility. Int J Mol Sci 2020; 21:ijms21155274. [PMID: 32722328 PMCID: PMC7432692 DOI: 10.3390/ijms21155274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.
Collapse
Affiliation(s)
- Piotr Kamiński
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, Prof. Szafran St. 1, PL 65-516 Zielona Góra, Poland
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland;
- Correspondence:
| | - Jędrzej Baszyński
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland;
| | - Izabela Jerzak
- Department of Pharmacology and Toxicology, Collegium Medicum, University of Zielona Góra, Zyta St. 28, PL 65-046 Zielona Góra, Poland;
| | - Brendan P. Kavanagh
- RCSI Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland;
| | - Ewa Nowacka-Chiari
- Department of Sport Promotion, Institute of Biological Sciences, University of Zielona Góra, Prof. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Mateusz Polanin
- Karol Marcinkowski University Hospital in Zielona Góra, Zyta St. 26, PL 65-045 Zielona Góra, Poland;
| | - Marek Szymański
- Female Pathology and Oncological Gynecology, Department of Obstetrics, Faculty of Medicine, University Hospital No. 2, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejski St. 75, PL 85-168 Bydgoszcz, Poland;
- NZOZ Medical Center Co. Prof. dr. hab. med. Wiesław Szymański, Dr. hab. med. Marek Szymański, Waleniowa St. 24, PL 85-435 Bydgoszcz, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Wojciech Kozera
- Department of Agricultural Chemistry, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology in Bydgoszcz, Seminaryjna St. 5, PL 85-326 Bydgoszcz, Poland;
| |
Collapse
|
18
|
Fernandez MC, O'Flaherty C. Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Hum Reprod 2020; 33:1394-1407. [PMID: 29912414 DOI: 10.1093/humrep/dey221] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/24/2023] Open
Abstract
STUDY QUESTION Are all components of the peroxiredoxins (PRDXs) system important to control the levels of reactive oxygen species (ROS) to maintain viability and DNA integrity in spermatozoa? SUMMARY ANSWER PRDX6 is the primary player of the PRDXs system for maintaining viability and DNA integrity in human spermatozoa. WHAT IS KNOWN ALREADY Mammalian spermatozoa are sensitive to high levels of ROS and PRDXs are antioxidant enzymes proven to control the levels of ROS generated during sperm capacitation to avoid oxidative damage in the spermatozoon. Low amounts of PRDXs are associated with male infertility. The absence of PRDX6 promotes sperm oxidative damage and infertility in mice. STUDY DESIGN, SIZE, DURATION Semen samples were obtained over a period of one year from a cohort of 20 healthy non-smoking volunteers aged 22-30 years old. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm from healthy donors was incubated for 2 h in the absence or presence of inhibitors for the 2-Cys PRDXs system (peroxidase, reactivation system and NADPH-enzymes suppliers) or the 1-Cys PRDX system (peroxidase and calcium independent-phospholipase A2 (Ca2+-iPLA2) activity). Sperm viability, DNA oxidation, ROS levels, mitochondrial membrane potential and 4-hydroxynonenal production were determined by flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE We observed a significant decrease in viable cells due to inhibitors of the 2-Cys PRDXs, PRDX6 Ca2+-iPLA2 activity or the PRDX reactivation system compared to controls (P ≤ 0.05). PRDX6 Ca2+-iPLA2 activity inhibition had the strongest detrimental effect on sperm viability and DNA oxidation compared to controls (P ≤ 0.05). The 2-Cys PRDXs did not compensate for the inhibition of PRDX6 peroxidase and Ca2+-iPLA2 activities. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Players of the reactivation systems may differ among mammalian species. WIDER IMPLICATIONS OF THE FINDINGS The Ca2+-iPLA2 activity of PRDX6 is the most important and first line of defense against oxidative stress in human spermatozoa. Peroxynitrite is scavenged mainly by the PRDX6 peroxidase activity. These findings can help to design new diagnostic tools and therapies for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by The Canadian Institutes of Health Research (MOP 133661 to C.O.), and by RI MUHC-Desjardins Studentship in Child Health Research awarded to M.C.F. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
20
|
Long-Term Adverse Effects of Oxidative Stress on Rat Epididymis and Spermatozoa. Antioxidants (Basel) 2020; 9:antiox9020170. [PMID: 32093059 PMCID: PMC7070312 DOI: 10.3390/antiox9020170] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is a common culprit of several conditions associated with male fertility. High levels of reactive oxygen species (ROS) promote impairment of sperm quality mainly by decreasing motility and increasing the levels of DNA oxidation. Oxidative stress is a common feature of environmental pollutants, chemotherapy and other chemicals, smoke, toxins, radiation, and diseases that can have negative effects on fertility. Peroxiredoxins (PRDXs) are antioxidant enzymes associated with the protection of mammalian spermatozoa against oxidative stress and the regulation of sperm viability and capacitation. In the present study, we aimed to determine the long-term effects of oxidative stress in the testis, epididymis and spermatozoa using the rat model. Adult male rats were treated with tert-butyl hydroperoxide (t-BHP) or saline (control group), and reproductive organs and spermatozoa were collected at 3, 6, and 9 weeks after the end of treatment. We determined sperm DNA oxidation and motility, and levels of lipid peroxidation and protein expression of antioxidant enzymes in epididymis and testis. We observed that cauda epididymal spermatozoa displayed low motility and high DNA oxidation levels at all times. Lipid peroxidation was higher in caput and cauda epididymis of treated rats at 3 and 6 weeks but was similar to control levels at 9 weeks. PRDX6 was upregulated in the epididymis due to t-BHP; PRDX1 and catalase, although not significant, followed similar trend of increase. Testis of treated rats did not show signs of oxidative stress nor upregulation of antioxidant enzymes. We concluded that t-BHP-dependent oxidative stress promoted long-term changes in the epididymis and maturing spermatozoa that result in the impairment of sperm quality.
Collapse
|
21
|
Llavanera M, Delgado-Bermúdez A, Olives S, Mateo-Otero Y, Recuero S, Bonet S, Fernández-Fuertes B, Yeste M, Barranco I. Glutathione S-Transferases Play a Crucial Role in Mitochondrial Function, Plasma Membrane Stability and Oxidative Regulation of Mammalian Sperm. Antioxidants (Basel) 2020; 9:antiox9020100. [PMID: 31991648 PMCID: PMC7070295 DOI: 10.3390/antiox9020100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Glutathione S-transferases (GSTs) are essential sperm antioxidant enzymes involved in cell protection against oxidative stress and toxic chemicals, preserving sperm function and fertilising ability. Artificial insemination (AI) in pigs is commonly carried out through the use of liquid-stored semen at 17 °C, which not only reduces sperm metabolic activity but also sperm quality and AI-farrowing rates within the 72 h of storage. While one may reasonably suggest that such enzymes are implicated in the physiology and maintenance of mammalian sperm function during liquid-storage, no previous studies conducted on any species have addressed this hypothesis. Therefore, the objective of the present work was to characterise the presence and function of sperm GSTs in mammalian sperm, using the pig as a model. In this regard, inhibition of such enzymes by ethacrynic acid (EA) during semen storage at 17 °C was performed to evaluate the effects of GSTs in liquid-preserved boar sperm by flow cytometry, immunofluorescence, and immunoblotting analysis. The results of this study have shown, for the first time in mammalian species, that the inhibition of GSTs reduces sperm quality and functionality parameters during their storage at 17 °C. These findings highlight the key role of such enzymes, especially preserving mitochondrial function and maintaining plasma membrane stability. In addition, this study has identified and localised GSTM3 in the tail and equatorial subdomain of the head of boar sperm. Finally, this study has set grounds for future investigations testing supplementation of semen extenders with GSTs, as this may improve fertility outcomes of swine AIs.
Collapse
Affiliation(s)
- Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Samuel Olives
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Beatriz Fernández-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
- Correspondence: (M.Y.); (I.B.); Tel.: +34-972-419514 (M.Y. & I.B.)
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (S.R.); (S.B.); (B.F.-F.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain;
- Correspondence: (M.Y.); (I.B.); Tel.: +34-972-419514 (M.Y. & I.B.)
| |
Collapse
|
22
|
Drevet JR, Aitken RJ. Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants (Basel) 2020; 9:E95. [PMID: 31979208 PMCID: PMC7070651 DOI: 10.3390/antiox9020095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm cells have long been known to be good producers of reactive oxygen species, while they are also known to be particularly sensitive to oxidative damage affecting their structures and functions. As with all organic cellular components, sperm nuclear components and, in particular, nucleic acids undergo oxidative alterations that have recently been shown to be commonly encountered in clinical practice. This review will attempt to provide an overview of this situation. After a brief coverage of the biological reasons why the sperm nucleus and associated DNA are sensitive to oxidative damage, a summary of the most recent results concerning the oxidation of sperm DNA in animal and human models will be presented. The study will then attempt to cover the possible consequences of sperm nuclear oxidation on male fertility and beyond.
Collapse
Affiliation(s)
- Joël R. Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103—CNRS UMR6293—Université Clermont Auvergne, CRBC building, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Robert John Aitken
- School of Environmental and Life Sciences, Priority Research Centre for Reproductive Sciences, The University of Newcastle, Callaghan, Newcastle 2308, Australia;
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, Newcastle 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, 13 2305 Newcastle, Australia
| |
Collapse
|
23
|
Myandina GI, Hasan A, Azova MM, Tarasenko EV, Kulchenko NG. Influence of GSTP1 gene polymorhism on decreased semen quality. RUSSIAN OPEN MEDICAL JOURNAL 2019. [DOI: 10.15275/rusomj.2019.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background ― Genetic polymorphisms analysis of metabolic and antioxidant systems pathway genes are associated with male infertility is the most perspective and developed field in andrology. Purpose ― the aim of the research is to reveal the association of the glutathione S-transferase gene GSTP1 polymorphism C/T (rs1138272) with risk of pathospermia in Russian men in Moscow region. Material and Methods ― Case control study was conducted on 68 fertile men and 70 infertile men with various forms of pathospermia. Sperm analysis was performed according to WHO guidelines (WHO, 2010). DNA was extracted from peripheral blood leukocytes. Genotyping of the GSTP1 gene polymorphisms was carried out by generated amplicons from melting curve analysis after real time PCR. Results ― statistically significant association of polymorphism GSTP1 C/T (Ala/Val; rs1138272) with asthenozoospermia (χ2=8.58, p=0.003) and teratospermia (χ2=6.81, p=0.009) risk was found. The frequencies of homozygous and heterozygous carries (CT+TT genotypes) for polymorphic locus GSTP1 gene (rs1138272) are 3 times higher for men with disturbance of motility of spermatozoa and 2.5 times higher for men with abnormalities in morphology of spermatozoa, then for men with normozoospermia. Conclusion ― The GSTP1 C>T polymorphism (rs1138272) associated with risk of teratospermia and asthenozoospermia in male of reproductive age.
Collapse
|
24
|
Walters JLH, De Iuliis GN, Dun MD, Aitken RJ, McLaughlin EA, Nixon B, Bromfield EG. Pharmacological inhibition of arachidonate 15-lipoxygenase protects human spermatozoa against oxidative stress. Biol Reprod 2019; 98:784-794. [PMID: 29546268 DOI: 10.1093/biolre/ioy058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
One of the leading causes of male infertility is defective sperm function, a pathology that commonly arises from oxidative stress in the germline. Lipid peroxidation events in the sperm plasma membrane result in the generation of cytotoxic aldehydes such as 4-hydroxynonenal (4HNE), which accentuate the production of reactive oxygen species (ROS) and cause cellular damage. One of the key enzymes involved in the metabolism of polyunsaturated fatty acids to 4HNE in somatic cells is arachidonate 15-lipoxygenase (ALOX15). Although ALOX15 has yet to be characterized in human spermatozoa, our previous studies have revealed a strong link between ALOX15 activity and the levels of oxidative stress and 4HNE in mouse germ cell models. In view of these data, we sought to assess the function of ALOX15 in mature human spermatozoa and determine whether the pharmacological inhibition of this enzyme could influence the level of oxidative stress experienced by these cells. By driving oxidative stress in vitro with exogenous H2O2, our data reveal that 6,11-dihydro[1]benzothiopyrano[4,3-b]indole (PD146176; a selective ALOX15 inhibitor) was able to significantly reduce several deleterious, oxidative insults in spermatozoa. Indeed, PD146176 attenuated the production of ROS, as well as membrane lipid peroxidation and 4HNE production in human spermatozoa. Accordingly, ALOX15 inhibition also protected the functional competence of these cells to acrosome react and bind homologous human zonae pellucidae. Together, these results implicate ALOX15 in the propagation of oxidative stress cascades within human spermatozoa and offer insight into potential therapeutic avenues to address male in fertility that arises from oxidative stress.
Collapse
Affiliation(s)
- Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
25
|
Migliaccio V, Sica R, Scudiero R, Simoniello P, Putti R, Lionetti L. Physiological Adaptation to Simultaneous Chronic Exposure to High-Fat Diet and Dichlorodipheniletylhene (DDE) in Wistar Rat Testis. Cells 2019; 8:cells8050443. [PMID: 31083466 PMCID: PMC6562479 DOI: 10.3390/cells8050443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/03/2022] Open
Abstract
Environmental chemicals can be introduced by consuming contaminated foods. The environmental chemical dichlorodiphenyldichloroethylene (DDE), a persistent metabolite of dichlorodiphenyltrichloroethane (DDT), can affect spermatogenesis. Our study aims to evaluate, by using spectrophotometric analyses, western blot, and immunohistochemistry, the adaptive responses in testis of adult rats treated with a non-toxic dose of DDE, alone or in association with a high-fat diet (HFD). Four experimental groups were performed: N (normal diet); D (HFD); D + DDE (HFD + DDE); N + DDE (normal diet + DDE). D group showed a reduction in antioxidant capacity, and increases in lipid peroxidation, apoptosis, and proliferation associated with morphological impairment. A reduction in androgen receptor (AR) and serum testosterone levels were also found. DDE-treated groups exhibited higher lipid peroxidation levels compared to N and D, associated with pronounced defect in antioxidant capacity, apoptosis, cellular proliferation, as well as with tissue damage. Moreover, decreases in AR and serum testosterone levels were found in DDE-treated groups vs. N and D. In conclusion, HFD and DDE produced cellular stress leading to antioxidant impairment, apoptosis, and decreases in AR and serum testosterone levels associated with tissue damage. Cellular proliferation could be used as an adaptation to counterbalance the occurred damage, maintaining a pool of tubules that follow physiological maturation.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Biology, University of Naples, Federico II, Naples, 80126, Italy.
| | - Raffaella Sica
- Department of Biology, University of Naples, Federico II, Naples, 80126, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples, Federico II, Naples, 80126, Italy.
| | - Palma Simoniello
- Department of Science and Technologies, University of Naples, Parthenope, 80133 Naples, Italy.
| | - Rosalba Putti
- Department of Biology, University of Naples, Federico II, Naples, 80126, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
26
|
Díaz-Miranda EA, Maitan PP, Machado TP, Camilo BS, Lima DA, Okano DS, Penitente-Filho JM, Machado-Neves M, de Oliveira LL, Guimarães SEF, da Costa EP, Guimarães JD. Disruption of bovine sperm functions in the presence of aplastic midpiece defect. Andrology 2019; 8:201-210. [PMID: 30908900 DOI: 10.1111/andr.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bulls are of great importance in the productive chain and for this reason they should have a good semen quality. There is no doubt that sperm morphology is very important to bull fertility, although little is known about how exactly the abnormal morphologies may affect sperm functions. OBJECTIVES To detail the morphological description of the aplastic midpiece defect (AMD), as well as to understand its consequences for male fertility based on membrane and acrosome status, mitochondrial membrane potential and DNA integrity parameters. MATERIALS AND METHODS The bulls were divided into two groups: control, consisting of satisfactory potential breeders (n = 3); and AMD, consisting of unsatisfactory potential breeders with a high percentage of AMD (n = 3). Bulls were evaluated by the breeding soundness evaluation; five ejaculates were collected from each animal and analyzed by flow cytometry. RESULTS Spermatozoa from AMD group exhibited lower sperm motility and vigor (p < 0.05). In addition, it also exhibited lower mitochondrial membrane potential (p < 0.05), a higher percentage of spermatozoa with DNA fragmentation (p < 0.05), lower acrosome and plasma membrane integrity (p < 0.05), and higher lipid bilayer sperm membrane disorganization (p < 0.05) in comparison with control bulls. DISCUSSION These findings may be due to oxidative stress and a reduction of the energy production capacity in addition to an alteration in the structural composition of the sperm cell. Moreover, semen with a high percentage of AMD may also be undergoing apoptosis. CONCLUSION Bulls with a high percentage of AMD in their semen are not suitable for reproduction. Furthermore, it suggests there is a putative genetic basis for this sperm defect.
Collapse
Affiliation(s)
- E A Díaz-Miranda
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - P P Maitan
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - T P Machado
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - B S Camilo
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - D A Lima
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - D S Okano
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J M Penitente-Filho
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - M Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L L de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - S E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - E P da Costa
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J D Guimarães
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
27
|
Mohammadzadeh M, Ramazani V, Khalili MA, Hamishekar H, Dehghan Marvast L, Talebi AR, Zare-Zardini H, Ghasemi S. Medium containing different concentrations of catalase as a strategy for optimising sperm parameters and chromatin in normospermic persons. Andrologia 2019; 51:e13231. [PMID: 30746730 DOI: 10.1111/and.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to comprise the effect of catalase on sperm parameters and chromatin in normospermic persons. Semen samples were obtained from fertile men. A certain amount of different concentrations of catalase (0.1, 1, 10, 50, 100, 150 and 200 IU.ml) was added to each vial containing semen. Control group had similar condition to treated groups without treatment. Treatment was done for one hour in incubator and 4 and 24 hr in room temperature. Sperm parameters (motility, viability and morphology) and chromatin were evaluated after incubation. The results show that percentage of motility was insignificantly increased at concentration of 100 IU.ml catalase. This increase was higher than other examined concentration in all incubation time. The increase in sperm motility had significant difference in concentrations of 100 IU.ml with other concentrations. Other parameters showed no significant difference in all concentrations. Regarding the health of sperm chromatin, low concentrations of catalase had significant effect on this variable. This effect was more in low concentrations than high concentrations. This study showed the use of lower concentrations of antioxidant can improve the sperm parameters and chromatin quality. The low concentrations of catalase led to protection of chromatin and optimisation of sperm parameters.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Ramazani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Hamishekar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Laleh Dehghan Marvast
- Research and Clinical Center for Infertility, Andrology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Ghasemi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
28
|
Proteomic Signatures Reveal Differences in Stress Response, Antioxidant Defense and Proteasomal Activity in Fertile Men with High Seminal ROS Levels. Int J Mol Sci 2019; 20:ijms20010203. [PMID: 30626014 PMCID: PMC6337289 DOI: 10.3390/ijms20010203] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of reactive oxygen species (ROS) are a major cause of male infertility. However, some men with high seminal ROS levels are still fertile. The main objective of this study was to understand the molecular mechanism(s) responsible for the preservation of fertility in those men. Semen samples from fertile men were divided into two groups: control (n = 10, ROS < 102.2 RLU/s/106 sperm) and ROS+ (n = 10, ROS > 102.2 RLU/s/106 sperm). Proteomic analysis of seminal plasma and spermatozoa was used to identify the differentially expressed proteins (DEPs) between the experimental groups, from which some proteins were validated by Western blot (WB). A total of 44 and 371 DEPs were identified between the study groups in the seminal plasma and spermatozoa, respectively. The identified DEPs were primarily involved in oxidoreductase, endopeptidase inhibitor, and antioxidant activities. We validated by WB the underexpression of NADH:ubiquinone oxidoreductase core subunit S1 (p = 0.01), as well as the overexpression of superoxide dismutase 1 (p = 0.03) and peroxiredoxin 4 (p = 0.04) in spermatozoa of ROS+ group. Our data suggest that fertile men with high ROS levels possess an effective antioxidant defense system that protects sperm proteins, as well as an active proteasomal system for degradation of defective proteins.
Collapse
|
29
|
DNA Damage and Repair in Human Reproductive Cells. Int J Mol Sci 2018; 20:ijms20010031. [PMID: 30577615 PMCID: PMC6337641 DOI: 10.3390/ijms20010031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The fundamental underlying paradigm of sexual reproduction is the production of male and female gametes of sufficient genetic difference and quality that, following syngamy, they result in embryos with genomic potential to allow for future adaptive change and the ability to respond to selective pressure. The fusion of dissimilar gametes resulting in the formation of a normal and viable embryo is known as anisogamy, and is concomitant with precise structural, physiological, and molecular control of gamete function for species survival. However, along the reproductive life cycle of all organisms, both male and female gametes can be exposed to an array of “stressors” that may adversely affect the composition and biological integrity of their proteins, lipids and nucleic acids, that may consequently compromise their capacity to produce normal embryos. The aim of this review is to highlight gamete genome organization, differences in the chronology of gamete production between the male and female, the inherent DNA protective mechanisms in these reproductive cells, the aetiology of DNA damage in germ cells, and the remarkable DNA repair mechanisms, pre- and post-syngamy, that function to maintain genome integrity.
Collapse
|
30
|
Garcia-Rodriguez A, de la Casa M, Gosálvez J, Roy R. CAT-262CT Genotype shows higher catalase activity in seminal plasma and lower risk of male infertility. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
31
|
O'Flaherty C. Peroxiredoxin 6: The Protector of Male Fertility. Antioxidants (Basel) 2018; 7:antiox7120173. [PMID: 30477206 PMCID: PMC6316438 DOI: 10.3390/antiox7120173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
Abstract
The spermatozoon is a terminal cell with the unique purpose of delivering the paternal genome to the oocyte during fertilization. Once spermatozoa enter into the female reproductive tract, they count on only the antioxidant protection that they received during spermatogenesis and epididymal maturation. Peroxiredoxins (PRDXs), particularly PRDX6, are important players in the antioxidant protection and regulation of reactive oxygen species (ROS) levels in spermatozoa. PRDX6, through its peroxidase and calcium-independent phospholipase A₂ activities, plays a major role in the regulation of ROS to maintain viability and motility and allow the spermatozoon to achieve fertilizing ability during the complex process of capacitation. The absence of PRDX6 is sufficient to promote abnormal reproductive outcomes in mice that resemble what we observe in infertile men. Indeed, Prdx6-/- spermatozoa display low motility and severe DNA damage, which is translated into reduced ability to fertilize oocytes in vitro or produce a low number of pups compared to wild-type controls. This review focuses on the role of PRDX6 as the primary antioxidant enzyme that protects the spermatozoon from oxidative-stress-associated damages to protect the paternal genome and assure fertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University and the Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
32
|
Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed Pharmacother 2018; 106:714-723. [DOI: 10.1016/j.biopha.2018.06.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
|
33
|
García Rodríguez A, de la Casa M, Johnston S, Gosálvez J, Roy R. Association of polymorphisms in genes coding for antioxidant enzymes and human male infertility. Ann Hum Genet 2018; 83:63-72. [PMID: 30191955 DOI: 10.1111/ahg.12286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Although oxidative stress is thought to be an important cause of male infertility, primarily due to DNA and cell membrane damage, little is known about the genetic causes underlying suboptimal function of the seminal enzymatic antioxidant system. The aim of this study was to investigate the relationship of four potentially functional polymorphisms associated with oxidative stress pathway genes (superoxide dismutase-SOD2 lle58Thr and SOD2 rs4880, catalase-CAT C-262T, glutathione peroxidase 1-GPX1 Pro200Leu) and two null variants of the glutathione S transferase (GSTT and GSTM) genes and infertility risk. METHODS A case control study was conducted on 313 infertile patients and 80 fertile donors. Each ejaculate was subjected to a seminal analysis that included the classical parameters seminal volume, sperm concentration, sperm motility, and sperm morphology, as well as sperm DNA fragmentation (patients only). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR multiplex methods were carried out for genotyping. RESULTS Statistically significant differences were found between fertile donors and infertile patients for SNP CAT C-262T; the CC genotype was related with a twofold increased risk of infertility (odds ratio [OR] = 2.262; 95% confidence interval [CI] = 1.369-3.733; P = 0.001), whereas the CT genotype was associated with a protective effect (OR = 0.401; 95% CI = 0.241-0.667; P = 0.001). Surprisingly, the SOD2 Ile58ssThr SNP was not represented in the sample population, so its frequency in the current population frequenting fertility clinics in Madrid may be very low. CONCLUSIONS Our results suggest that the CAT SNP C-262T is potentially associated with an increased risk of male infertility.
Collapse
Affiliation(s)
| | | | - Stephen Johnston
- School of Agriculture and Food Science, University of Queensland, Queensland, Australia
| | - Jaime Gosálvez
- Biology Department, University Autónoma of Madrid, Madrid, Spain
| | - Rosa Roy
- Biology Department, University Autónoma of Madrid, Madrid, Spain
| |
Collapse
|
34
|
O'Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol Reprod 2018; 97:577-585. [PMID: 29025014 DOI: 10.1093/biolre/iox104] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Cellular response to reactive oxygen species (ROS) includes both reversible redox signaling and irreversible nonenzymatic reactions which depend on the nature and concentration of the ROS involved. Changes in thiol/disulfide pairs affect protein conformation, enzymatic activity, ligand binding, and protein-protein interactions. During spermatogenesis and epididymal maturation, there are ROS-dependent modifications of the sperm chromatin and flagellar proteins.The spermatozoon is regulated by redox mechanisms to acquire fertilizing ability. For this purpose, controlled amounts of ROS are necessary to assure sperm activation (motility and capacitation). Modifications of the thiol groups redox status of sperm proteins are needed for spermatozoon to achieve fertilizing ability. However, when ROS are produced at high concentrations, the established oxidative stress promotes pathological changes affecting sperm function and leading to infertility. Sperm proteins are sensitive to high levels of ROS and suffer modifications that impact on motility, capacitation, and the ability of the spermatozoon to recognize and bind to the zona pellucida and damage of sperm DNA. Thiol oxidation, tyrosine nitration, and S-glutathionylation are highlighted in this review as significant redox-dependent protein modifications associated with impairment of sperm function and alteration of paternal genome leading to infertility. Peroxiredoxins, the primary antioxidant protection in spermatozoa, are affected by most of the protein modifications described in this review. They play a significant role in both physiological and pathological processes in mammalian spermatozoa.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - David Matsushita-Fournier
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
35
|
Malivindi R, Rago V, De Rose D, Gervasi MC, Cione E, Russo G, Santoro M, Aquila S. Influence of all‐
trans
retinoic acid on sperm metabolism and oxidative stress: Its involvement in the physiopathology of varicocele‐associated male infertility. J Cell Physiol 2018; 233:9526-9537. [DOI: 10.1002/jcp.26872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Rocco Malivindi
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
| | - Vittoria Rago
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
| | - Daniela De Rose
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
- Centro Sanitario, University of Calabria Cosenza Italy
| | | | - Erika Cione
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
| | - Giampiero Russo
- Consultorio Familiare UNICAL, ASP—National Health Service, Centro Sanitario, University of Calabria Rende Italy
| | - Marta Santoro
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
- Centro Sanitario, University of Calabria Cosenza Italy
| | - Saveria Aquila
- Department of Pharmacy and Sciences of Health and Nutrition University of Calabria Cosenza Italy
- Centro Sanitario, University of Calabria Cosenza Italy
| |
Collapse
|
36
|
Lee D, Moawad AR, Morielli T, Fernandez MC, O'Flaherty C. Peroxiredoxins prevent oxidative stress during human sperm capacitation. Mol Hum Reprod 2018; 23:106-115. [PMID: 28025393 DOI: 10.1093/molehr/gaw081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22-30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P < 0.05) without altering sperm viability. PKA substrates and tyrosine phosphorylations were prevented in FCSu-treated spermatozoa in a differential fashion depending on the type and the time of addition of the inhibitor used compared to non-capacitated controls (P < 0.05). TSP and MJ33 promoted an increase of lipid peroxidation in spermatozoa (P < 0.01) and these levels were higher in those spermatozoa incubated with the inhibitors and FCSu compared to those capacitated spermatozoa incubated without the inhibitors (P < 0.0001). Inhibition of 2-Cys PRDXs by TSP generated an oxidative stress in spermatozoa, affecting their viability compared to controls (P < 0.05). This oxidative stress was prevented by nuclephile D-penicillamine (PEN). MJ33 also promoted an increase of lipid peroxidation and impaired sperm viability compared to non-treated controls (P < 0.05) but its effect was not circumvented by PEN, suggesting that not only peroxidase but also Ca2+-iPLA2 activity of PRDX6 are necessary to guarantee viability in human spermatozoa. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION We focused on the global effect of PRDXs inhibitors on human sperm capacitation and in two of its associated phosphorylation events. Thus, other phosphorylation events and mechanisms necessary for capacitation may also be affected. WIDER IMPLICATIONS OF THE FINDINGS PRDXs are the major antioxidant system in ejaculated spermatozoa and are necessary to allow spermatozoon to achieve fertilizing ability (capacitation and acrosome reaction). STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Canadian Institutes of Health Research (MOP 133661) and the Fonds de Recherché en Santé Quebec (FRSQS #22151) to C.O. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Donghyun Lee
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Adel R Moawad
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Tania Morielli
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
37
|
Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during cold and warm periods of the year. Animal 2018; 12:559-568. [DOI: 10.1017/s1751731117001811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Standardized extract of Bacopa monnieri (CDRI-08): Effect on germ cell dynamics and possible mechanisms of its beneficial action on spermatogenesis and sperm quality in male mice. Biochem Biophys Res Commun 2017; 494:34-41. [PMID: 29054405 DOI: 10.1016/j.bbrc.2017.10.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/31/2023]
Abstract
Bacopa monnieri (BM) is used in traditional medicine as nerve tonic. We have recently shown that CDRI-08, a standardized extract of BM, improves testicular functions and epididymal sperm quality in Parkes (P) mice. The aim of the present study was to investigate the effect of CDRI-08 on germ cell dynamics and mechanisms of its action on spermatogenesis and sperm quality in P mice, and to determine the chemical profile of the extract. CDRI-08 (40 and 80 mg/kg body weight) was orally administered to male mice for 28 days. Germ cell dynamics, oxidative stress parameters in testis and sperm, and expressions of nuclear factor-erythroid-2-related factor-2 (Nrf2), phosphorylated protein kinase B (p-Akt) and upstream kinases in mitogen-activated protein kinase (MAPK) pathway namely MAP2K1, MAP2K2 and MKK4 in the testis were evaluated. The treatment potentiated germ cell dynamics and improved sperm quality by enhancing antioxidant enzymes activities. The beneficial effects of CDRI-08 in the testis involve p-Akt-mediated activation of Nrf2, thereby enhancing antioxidant enzymes activities; upregulation of MAP2K1 and MAP2K2 and suppression of MKK4 are also implicated in this action. A total of 26 phytocomponents were identified in CDRI-08 by GC-MS. The results suggest that CDRI-08 also may prove useful in improving reproductive health in males.
Collapse
|
39
|
Partyka A, Rodak O, Bajzert J, Kochan J, Niżański W. The Effect of L-Carnitine, Hypotaurine, and Taurine Supplementation on the Quality of Cryopreserved Chicken Semen. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7279341. [PMID: 28523277 PMCID: PMC5421088 DOI: 10.1155/2017/7279341] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
Abstract
The objective of this study was to investigate the effect of L-carnitine (LC), hypotaurine (HT), and taurine (T) on the quality of frozen-thawed chicken semen. Pooled semen samples were divided into seven aliquots (control, 1 mM LC, 5 mM LC, 1 mM HT, 10 mM HT, 1 mM T, and 10 mM T) and subjected to cryopreservation. Postthaw sperm motility was determined by IVOS system and sperm characteristics were assessed with fluorochromes and flow cytometry. The highest sperm motility and the highest percentage of viable sperm were in the HT1 group (P < 0.01 and P < 0.05) following cryopreservation. After thawing, we observed a higher percentage of sperm without apoptosis and membrane reorganization changes in the LC1 and T1 group when compared to the control (P < 0.05). There was a higher percentage of live sperm without lipid peroxidation (LPO) in all treatments (P < 0.01; P < 0.05), when compared to the control group. The percentage of sperm with high mitochondrial potential significantly increased with LC1, T1, and T10 (P < 0.05). Supplementation of the diluent with LC1, LC5, and T1 significantly (P < 0.05) reduced DNA susceptibility to fragmentation, compared to the control and HT1 groups. These results indicate that the addition of examined antioxidants improves the quality of cryopreserved chicken semen.
Collapse
Affiliation(s)
- Agnieszka Partyka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Olga Rodak
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Joanna Bajzert
- Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology and Prevention Veterinary, Wroclaw University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-375 Wroclaw, Poland
| | - Joanna Kochan
- Institute of Veterinary Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-159 Krakow, Poland
| | - Wojciech Niżański
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| |
Collapse
|
40
|
Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, Anuar MNN. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases 2017; 5:E9. [PMID: 28933362 PMCID: PMC5456340 DOI: 10.3390/diseases5010009] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Defective sperm function has been identified as the most common cause of infertility. The objective of this study was to review recent findings on the effects of various antioxidants on male fertility. High amounts of poly unsaturated fatty acid are found in the mammalian spermatozoa membranes, thereby making them susceptible to lipid peroxidation. Although, free radicals and reactive oxygen species (ROS) play major roles in reproduction, they are strongly associated with oxidative stress. Furthermore, factors such as obesity, inflammation, pollutants and cigarette smoking are negatively correlated with spermatogenesis. Endogenous antioxidants system exists to mediate these damages. In a normal physiological state, the seminal plasma contains antioxidant enzyme mechanism that is capable of quenching these ROS as well as protecting the spermatozoa against any likely damage. However, high level of ROS triggered by inflammatory cells and oxidation of fatty acid in obese subjects may down play antioxidant mechanism resulting in oxidative stress. Evaluation of such oxidative stress is the first step in the treatment of male infertility through administration of suitable antioxidant. Notably, antioxidant such as vitamin E and C, carotenoids and carnitine have been found beneficial in restoring a balance between ROS generation and scavenging activities. There are emerging evidences that herbal products can also boost male reproductive functions. Nonetheless, a good lifestyle, regular exercise, avoidance of stress and observing safety rules at work are habits that can reverse male infertility.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Muhammad Ibrahim
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Ramli Roszaman
- Department of Obstetrics and Gynaecology, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, Jalan, 25200 Kuantan, Pahang, Malaysia.
| | - Muhammad Lokman Md Isa
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Jalan Hospital Campus, 25100 Kuantan, Pahang, Malaysia.
| | - Nur Aizura Mat Alewi
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Ainin Azwani Abdul Rafa
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Mohd Nur Nasyriq Anuar
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
41
|
Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Anim Reprod Sci 2016; 172:10-20. [DOI: 10.1016/j.anireprosci.2016.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 01/21/2023]
|
42
|
Mohanty G, Swain N, Goswami C, Kar S, Samanta L. Histone retention, protein carbonylation, and lipid peroxidation in spermatozoa: Possible role in recurrent pregnancy loss. Syst Biol Reprod Med 2016; 62:201-12. [DOI: 10.3109/19396368.2016.1148798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep 2015; 5:9169. [PMID: 25772901 PMCID: PMC4360475 DOI: 10.1038/srep09169] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
The xenoestrogen bisphenol-A (BPA) is a widespread environmental contaminant that has been studied for its impact on male fertility in several species of animals and humans. Growing evidence suggests that xenoestrogens can bind to receptors on spermatozoa and thus alter sperm function. The objective of the study was to investigate the effects of varying concentrations of BPA (0.0001, 0.01, 1, and 100 μM for 6 h) on sperm function, fertilization, embryonic development, and on selected fertility-related proteins in spermatozoa. Our results showed that high concentrations of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. High BPA concentrations also increased the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation and induced a precocious acrosome reaction, which resulted in poor fertilization and compromised embryonic development. In addition, BPA induced the down-regulation of β-actin and up-regulated peroxiredoxin-5, glutathione peroxidase 4, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase. Our results suggest that high concentrations of BPA alter sperm function, fertilization, and embryonic development via regulation and/or phosphorylation of fertility-related proteins in spermatozoa. We conclude that BPA-induced changes in fertility-related protein levels in spermatozoa may be provided a potential cue of BPA-mediated disease conditions.
Collapse
|