1
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Jafarzadeh A, Zandvakili R, Jafarzadeh Z, Nemati M. Dysregulated expression of the suppressors of cytokine signaling (SOCS) contributes to the development of prostate cancer. Pathol Res Pract 2024; 262:155558. [PMID: 39213689 DOI: 10.1016/j.prp.2024.155558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Different types of cytokines, growth factors, or hormones present within the tumor microenvironment that can activate the JAK-STAT signaling pathway by binding to their specific cell surface receptors. The constitutive activation of the JAK-STAT pathway can promote uncontrolled cell proliferation and prevent apoptosis contributing to tumor development. Activation of the JAK-STAT pathway is controlled by several regulatory molecules, particularly the suppressor of cytokine signaling (SOCS) family consisting of eight members, which include SOCS1-SOCS7 and the cytokine-inducible SH2-containing (CIS) proteins. In prostate cancer cells, the irregular expression of the SOCS1-SOCS3, SOCS5-SOCS7 as well as CIS can similarly and differentially result in the initiation of various cellular signaling pathways (in particular JAK-STAT3, MAPK, ERK) that promote cell proliferation, migration, invasion and viability; cell cycle progression; epithelial-mesenchymal transition; angiogenesis; resistance to therapy; immune evasion; and chronic inflammation within the tumor microenvironment which lead to tumor progression, metastasis and poor prognosis. Epigenetic modifications, mainly due to DNA methylation, microRNAs, pro-inflammatory cytokines, growth factors and androgens can influence the expression of the SOCS molecules in prostate cancer cells. Using strategies to modulate, restore or enhance the expression of SOCS proteins, may help overcome treatment resistance and improve the efficacy of existing therapies. In this review, we provide a comprehensive explanation regarding SOCS dysregulation in prostate cancer to provide insights into the mechanisms underlying the dysregulation of SOCS proteins. This knowledge may pave the way for the development of novel therapeutic strategies to manage prostate cancer by restoring and modulating the expression of SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Du Y, Xu X, Lv S, Liu H, Sun H, Wu J. SOCS7/HuR/FOXM1 signaling axis inhibited high-grade serous ovarian carcinoma progression. J Exp Clin Cancer Res 2022; 41:185. [PMID: 35624501 PMCID: PMC9137060 DOI: 10.1186/s13046-022-02395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background High-grade serous ovarian carcinoma (HGSOC) is clinically dominant and accounts for ~ 80% deaths in all types of ovarian cancer. The delayed diagnosis, rapid development, and wide dissemination of HGSOC collectively contribute to its high mortality rate and poor prognosis in the patients. Suppressors of cytokine signaling 7 (SOCS7) can regulate cytokine signaling and participate in cell cycle arrest and regulation of cell proliferation, which might also be involved in carcinogenesis. Here, we designated to investigate the functions and mechanisms of SOCS7 in HGSOC. Methods The clinical correlation between SOCS7 and HGSOC was examined by both bioinformatics and analysis of tissue samples in patients. Gain/Loss-of-function examinations were carried out to assess the effectiveness of SOCS7 in cell viability, cell cycle, and tumor growth of HGSOC. Furthermore, the underlying mechanisms were explored by identifying the downstream proteins and their interactions via proteomics analysis and immunoprecipitation. Results The expression of SOCS7, which was decreased in HGSOC tissues, was correlated with the clinical pathologic characteristics and overall survival of HGSOC patients. SOCS7 acted as a HGSOC suppressor by inhibiting cancer cell viability and tumor growth in vivo. The anti-HGSOC mechanism involves SOCS7’s regulatory effect on HuR by mediating its ubiquitination, the regulation of FOXM1 mRNA by HuR, as well as the interplays among these three clinically relevant factors. Conclusions The SOCS7 correlates with HGSOC and suppresses its tumorigenesis through regulating HuR and FOXM1, which also suggests that SOCS7 is a prospective biomarker for the clinical management of ovarian cancer, especially HGSOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02395-1.
Collapse
|
4
|
The E3 ubiquitin ligase SOCS-7 reverses immunosuppression via Shc1 signaling in hepatocellular carcinoma. J Transl Med 2022; 102:613-620. [PMID: 35042950 DOI: 10.1038/s41374-022-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies and is the third leading cause of tumor-related mortality worldwide. Despite advances in HCC treatment, diagnosis at the later stages, and the complex mechanisms relating to the cause and pathogenesis, results in less than 40% of HCC patients being eligible for potential therapy. Prolonged inflammation and resulting immunosuppression are major hallmarks of HCC; however, the mechanisms responsible for these processes have not been clearly elucidated. In this study, we identified SOCS-7, an inhibitor of cytokine signaling, as a novel regulator of immunosuppression in HCC. We found that SOCS-7 mediated E3 ubiquitin ligase activity on a signaling adaptor molecule, Shc1, in Huh-7 cells. Overexpression of SOCS-7 reduced the induction of immunosuppressive factors, TGF-β, Versican, and Arginase-1, and further reduced STAT3 activation. Furthermore, using an in vivo tumor model, we confirmed that SOCS-7 negatively regulates immunosuppression and inhibits tumor growth by targeting Shc1 degradation. Together, our study identified SOCS-7 as a possible therapeutic target to reverse immunosuppression in HCC.
Collapse
|
5
|
Feng X, Zhang L, Feng W, Zhang C, Jin T, Li J, Guo J. miR-221 promotes keratinocyte proliferation and migration by targeting SOCS7 and is regulated by YB-1. J Cell Mol Med 2022; 26:2299-2311. [PMID: 35201663 PMCID: PMC8995440 DOI: 10.1111/jcmm.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Proliferation and migration of keratinocytes are vital processes for the successful epithelization specifically after wounding. MiR‐221 has been identified to play a potential role in promoting wound regeneration by inducing blood vessel formation. However, little is known about the role of miR‐221 in the keratinocyte proliferation and migration during wound healing. An in vivo mice wound‐healing model was generated; the expression levels of miR‐221 were assessed by qRT‐PCR and fluorescence in situ hybridization. Initially, we found that miR‐221 was upregulated in the proliferative phase of wound healing. Further, in an in vivo wound‐healing mice model, targeted delivery of miR‐221 mimics accelerated wound healing. Contrastingly, inhibition of miR‐221 delayed healing. Additionally, we observed that overexpression of miR‐221 promoted cell proliferation and migration, while inhibition of miR‐221 had the opposite effects. Moreover, we identified SOCS7 as a direct target of miR‐221 in keratinocytes and overexpression of SOCS7 reversed the effects of miR‐221 in HaCaT keratinocytes. Finally, we identified that YB‐1 regulates the expression of miR‐221 in HaCaT keratinocytes. Overall, our experiments suggest that miR‐221 is regulated by YB‐1 in HaCaT keratinocytes and acts on SOCS7, thereby playing an important role in HaCaT keratinocyte proliferation and migration during wound healing.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lei Zhang
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wei Feng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ce Zhang
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tingting Jin
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jingyu Li
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jincai Guo
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Impact of pigment epithelium-derived factor on colorectal cancer in vitro and in vivo. Oncotarget 2018; 9:19192-19202. [PMID: 29721193 PMCID: PMC5922387 DOI: 10.18632/oncotarget.24953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/14/2018] [Indexed: 01/18/2023] Open
Abstract
Pigment epithelial derived factor (PEDF) is a secreted glycoprotein that is a non-inhibitory member of the serine protease inhibitor (serpin) family. PEDF exhibits multiple biological properties including neuroprotective, anti-angiogenic, and immune-modulating. Interestingly, PEDF exerts the inhibitory effects in cancers derived from certain tissues, including prostatic, ovarian, and pancreatic carcinomas. The current study aimed to elucidate its role in colorectal cancer development. PEDF expression in human colorectal cancer tissue was assessed using quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC). The effect of treatment with recombinant PEDF on cellular function was examined using in vitro functional assays. PEDF expression was downregulated in colorectal cancer cell tissue. Treatment with recombinant PEDF resulted in significant decreases in the rate of colorectal cancer cell migration and invasion and an increase in cellular adhesion in colorectal cancer cell lines examined. These results indicate that upregulation of PEDF expression may serve as a new strategy for further investigation of therapeutic relevance to the prevention of the metastatic spread of colorectal cancer.
Collapse
|
7
|
Leptin-Induced JAK/STAT Signaling and Cancer Growth. Vaccines (Basel) 2016; 4:vaccines4030026. [PMID: 27472371 PMCID: PMC5041020 DOI: 10.3390/vaccines4030026] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023] Open
Abstract
Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer.
Collapse
|
8
|
Abstract
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.
Collapse
|