1
|
Baranoski A, Semprebon SC, Biazi BI, Zanetti TA, Corveloni AC, Areal Marques L, Lepri SR, Coatti GC, Mantovani MS. Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:294-309. [PMID: 38279841 DOI: 10.1080/15287394.2024.2308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.
Collapse
Affiliation(s)
- Adrivanio Baranoski
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Simone Cristine Semprebon
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Bruna Isabela Biazi
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thalita Alves Zanetti
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amanda Cristina Corveloni
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Lilian Areal Marques
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sandra R Lepri
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Giuliana Castello Coatti
- Centro de Pesquisa Sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
2
|
Liu F, Zhou Q, Jiang HF, Zhang TT, Miao C, Xu XH, Wu JX, Yin SL, Xu SJ, Peng JY, Gao PP, Cao X, Pan F, He X, Chen XQ. Piperlongumine conquers temozolomide chemoradiotherapy resistance to achieve immune cure in refractory glioblastoma via boosting oxidative stress-inflamation-CD8 +-T cell immunity. J Exp Clin Cancer Res 2023; 42:118. [PMID: 37161450 PMCID: PMC10170830 DOI: 10.1186/s13046-023-02686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The failure of novel therapies effective in preclinical animal models largely reflects the fact that current models do not really mimic the pathological/therapeutic features of glioblastoma (GBM), in which the most effective temozolomide chemoradiotherapy (RT/TMZ) regimen can only slightly extend survival. How to improve RT/TMZ efficacy remains a major challenge in clinic. METHODS Syngeneic G422TN-GBM model mice were subject to RT/TMZ, surgery, piperlongumine (PL), αPD1, glutathione. Metabolomics or transcriptomics data from G422TN-GBM and human GBM were used for gene enrichment analysis and estimation of ROS generation/scavenging balance, oxidative stress damage, inflammation and immune cell infiltration. Overall survival, bioluminescent imaging, immunohistochemistry, and immunofluorescence staining were used to examine therapeutic efficacy and mechanisms of action. RESULTS Here we identified that glutathione metabolism was most significantly altered in metabolomics analysis upon RT/TMZ therapies in a truly refractory and reliable mouse triple-negative GBM (G422TN) preclinical model. Consistently, ROS generators/scavengers were highly dysregulated in both G422TN-tumor and human GBM. The ROS-inducer PL synergized surgery/TMZ, surgery/RT/TMZ or RT/TMZ to achieve long-term survival (LTS) in G422TN-mice, but only one LTS-mouse from RT/TMZ/PL therapy passed the rechallenging phase (immune cure). Furthermore, the immunotherapy of RT/TMZ/PL plus anti-PD-1 antibody (αPD1) doubled LTS (50%) and immune-cured (25%) mice. Glutathione completely abolished PL-synergistic effects. Mechanistically, ROS reduction was associated with RT/TMZ-resistance. PL restored ROS level (mainly via reversing Duox2/Gpx2), activated oxidative stress/inflammation/immune responses signature genes, reduced cancer cell proliferation/invasion, increased apoptosis and CD3+/CD4+/CD8+ T-lymphocytes in G422TN-tumor on the basis of RT/TMZ regimen. CONCLUSION Our findings demonstrate that PL reverses RT/TMZ-reduced ROS and synergistically resets tumor microenvironment to cure GBM. RT/TMZ/PL or RT/TMZ/PL/αPD1 exacts effective immune cure in refractory GBM, deserving a priority for clinical trials.
Collapse
Affiliation(s)
- Feng Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting-Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Miao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Hong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Xing Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Song-Lin Yin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Jie Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Yi Peng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pan-Pan Gao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuan Cao
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, 318000, China.
| | - Feng Pan
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Ministry of Education for Neurological Disorders, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Hu Q, Tao R, Hu X, Wu H, Xu J. Effects of piperlonguminine on lung injury in severe acute pancreatitis <em>via</em> the TLR4/NF-κB pathway. Eur J Histochem 2023; 67. [PMID: 36951266 PMCID: PMC10080291 DOI: 10.4081/ejh.2023.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Ran Tao
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Haibo Wu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Jianjun Xu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| |
Collapse
|
4
|
Meng H, Li S, Li Q, Wang Y, Wang G, Qu Y. Chemokine-like factor-like MARVEL transmembrane domain containing 6: Bioinformatics and experiments in vitro analyze in glioblastoma multiforme. Front Mol Neurosci 2023; 15:1026927. [PMID: 36698778 PMCID: PMC9869805 DOI: 10.3389/fnmol.2022.1026927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is a protein localized to the cell membrane and is known for its ability to co-localize with PD-L1 on the plasma membrane, prevent PD-L1 degradation, and maintain PD-L1 expression on the cell membrane. CMTM6 is highly expressed and plays an important role in various tumors such as oral squamous cell carcinoma (OSCC) and colorectal cancer (CRC), however, its role in Glioblastoma multiforme (GBM) is unclear. Methods In this paper, to investigate the role of CMTM6 in GBM, we analyzed the expression of CMTM6 in GBM, the interaction with CMTM6 and the associated genes by bioinformatics. Importantly, we analyzed the expression of CMTM6 in GBM in relation to tumor-infiltrating lymphocytes (TILs), immunoinhibitors, immunostimulators, chemokines and chemokine receptors. We further analyzed the function of CMTM6 and performed in vitro experiments to verify it. Finally, the sensitivity of CMTM6 to drugs was also analyzed and the relationship between CMTM6 and the anticancer drug Piperlonguminine (PL) was verified in vitro. Results The results showed that CMTM6 was highly expressed in GBM and correlated with multiple genes. Furthermore, CMTM6 is closely related to the immune microenvironment and inflammatory response in GBM. Bioinformatic analysis of CMTM6 correlated with the function of GBM, and our experiments demonstrated that CMTM6 significantly promoted the migration of GBM cells and epithelial-mesenchymal transition (EMT), but had no significant effect on other functions. Interestingly, we found that in GBM, PL promotes the expression of CMTM6. Discussion In this paper, we have performed a detailed analysis and validation of the role of CMTM6 in GBM using bioinformatics analysis and in vitro experiments to demonstrate that CMTM6 may be a potential target for glioma therapy.
Collapse
Affiliation(s)
- Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong, China,Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaohua Li
- Department of Laboratory Medicine, The Third People’s Hospital of Qingdao, Qingdao, Shandong, China
| | - Qingshu Li
- Department of Intensive Care Unit, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yuqin Wang
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Guoan Wang
- Qingdao Municipal Hospital, Qingdao, Shandong, China,*Correspondence: Guoan Wang, ✉
| | - Yan Qu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China,Yan Qu, ✉
| |
Collapse
|
5
|
Kuo YY, Ho KH, Shih CM, Chen PH, Liu AJ, Chen KC. Piperlongumine-inhibited TRIM14 signaling sensitizes glioblastoma cells to temozolomide treatment. Life Sci 2022; 309:121023. [DOI: 10.1016/j.lfs.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
6
|
Wang Q, Chu F, Zhang X, Hu H, Lu L, Wang F, Yu Y, Zhang Y, Ma J, Xu Z, Eldemery F, Ou C, Liu X. Infectious bursal disease virus replication is inhibited by avain T cell chemoattractant chemokine CCL19. Front Microbiol 2022; 13:912908. [PMID: 35935208 PMCID: PMC9355407 DOI: 10.3389/fmicb.2022.912908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokine CCL19, together with its receptor CCR7, is one of the most important factors recruiting immune cells into target organ during virus infection. Our previous study has shown that CCL19 played a vital role in the process of T cell trafficking into bursae during bursal disease virus (IBDV) infection. In this study, we hypothesized that CCL19 could exert direct influences on IBDV replication other than recruiting immune cells. A eukaryotic expression vector of pEGFP-N1/CCL19 was successfully constructed and identified by PCR, double enzymes digestion, and sequencing. Different concentrations of pEGFP-N1/CCL19 plasmids were transfected into DF1 cells and CCL19 protein was highly expressed. Then, DF1 cells were infected with IBDV B87 strain post-transfection. Based on PCR and Western blot results, CCL19 could obviously decrease the gene levels of VP1 and VP2 and the protein levels of VP2 and VP3. When CCL19 was knocked down, the gene levels of VP1 and VP2 were significantly upregulated. Moreover, indirect immunostaining revealed that the IBDV content was largely decreased after CCL19 overexpression. Additionally, CCL19 inhibitory effects might rely on activation of the JNK signal pathway. Taken together, chemokine CCL19 directly blocks IBDV replication in DF1 cells, indicating that CCL19 could play crucial functions other than recruiting T cells during the pathogenesis of IBDV.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fuming Chu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huilong Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lang Lu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Changbo Ou
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Life Science, Xinxiang University, Xinxiang, China
- Xingyou Liu
| |
Collapse
|
7
|
Cheng X, Ren Z, Liu Z, Sun X, Qian R, Cao C, Liu B, Wang J, Wang H, Guo Y, Gao Y. Cysteine cathepsin C: a novel potential biomarker for the diagnosis and prognosis of glioma. Cancer Cell Int 2022; 22:53. [PMID: 35109832 PMCID: PMC8812029 DOI: 10.1186/s12935-021-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cysteine cathepsin C encoded by the CTSC gene is an important member of the cysteine cathepsin family that plays a key role regulation of many types of tumors. However, whether CTSC is involved in the pathological process of glioma has not yet been reported. We comprehensively analyzed data from multiple databases and for the first time revealed a role and specific mechanism of action of CTSC in glioma, identifying it as a novel and efficient biomarker for the diagnosis and treatment of this brain tumor. Methods The expression of CTSC in glioma and its relationship with clinical characteristics and prognosis of patients with glioma were analyzed at different levels by using clinical sample information from several databases. CTSC expression levels in glioma and normal brain tissues, as well as in glioma cells and normal brain cells, was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Gene set enrichment analysis (GSEA) was used to reveal the signaling pathways that CTSC may participate in. The connectivity map was used to reveal small molecules that may inhibit CTSC expression in glioma, and the putative effect of these compounds was verified by RT-qPCR. Results Our analyses showed that the expression of CTSC in glioma was higher than that in non-cancerous cells. GSEA showed that CTSC expression may regulate the malignant development of glioma through Toll-like receptor signaling pathways, pathways in cancer, and extracellular matrix receptor interaction signaling pathways. And we proved piperlongumine and scopoletin could inhibit CTSC expression in glioma cells. Conclusions CTSC may serve as an efficient molecular target for the diagnosis and therapy of glioma, thereby improving the poor prognosis of patients with glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02417-6.
Collapse
Affiliation(s)
- Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Xiang Sun
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Chen Cao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Binfeng Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jialin Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongbo Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Zhengzhou, Henan, 450003, China. .,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, Henan, China.
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China.
| |
Collapse
|
8
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Pranweerapaiboon K, Noonong K, Apisawetakan S, Sobhon P, Chaithirayanon K. Methanolic Extract from Sea Cucumber, Holothuria scabra, Induces Apoptosis and Suppresses Metastasis of PC3 Prostate Cancer Cells Modulated by MAPK Signaling Pathway. J Microbiol Biotechnol 2021; 31:775-783. [PMID: 33958506 PMCID: PMC9705911 DOI: 10.4014/jmb.2103.03034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Sea cucumber, Holothuria scabra, is a well-known traditional Asian medicine that has been used for suppressing inflammation, promoting wound healing, and improving immunity. Moreover, previous studies demonstrated that the extract from H. scabra contains many bioactive compounds with potent inhibitory effect on tumor cell survival and progression. However, the effect of the methanolic extract from the body wall of H. scabra (BWMT) on human prostate cancer cells has not yet been investigated. In this study, we aimed to investigate the effects and underlying mechanism of BWMT on prostate cancer cell viability and metastasis. BWMT was obtained by maceration with methanol. The effect of BWMT on cell viability was assessed by MTT and colony formation assays. The intracellular ROS accumulation was evaluated using a DCFH-DA fluorescence probe. Hoechst 33342 staining and Annexin V-FITC/PI staining were used to examine the apoptotic-inducing effect of the extract. A transwell migration assay was performed to determine the anti-metastasis effect. BWMT significantly reduced cell viability and triggered cellular apoptosis by accumulating intracellular ROS resulting in the upregulation of JNK and p38 signaling pathways. In addition, BWMT also inhibited the invasion of PC3 cells by downregulating MMP-2/-9 expression via the ERK pathway. Consequently, our study provides BWMT from H. scabra as a putative therapeutic agent that could be applicable against prostate cancer progression.
Collapse
Affiliation(s)
| | - Kunwadee Noonong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand,School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand,Corresponding author Fax: +66-02-2015418 E-mail:
| |
Collapse
|
10
|
Allaman-Pillet N, Schorderet DF. Piperlongumine promotes death of retinoblastoma cancer cells. Oncotarget 2021; 12:907-916. [PMID: 33953844 PMCID: PMC8092346 DOI: 10.18632/oncotarget.27947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
Retinoblastoma is the most common pediatric intraocular malignant tumor. While retinoblastoma initiation is triggered by the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, tumor progression requires additional epigenetic changes, retinoblastoma genomes being quite stable. Although the management of RB has recently improved, new therapeutic agents are necessary to improve the treatment of advanced forms of retinoblastoma. In this report, we analyzed the pro-death effect of piperlongumine (PL), a natural compound isolated from Piper longum L., on two human retinoblastoma cell lines, WERI-Rb and Y79. The effects of PL on cell proliferation, cell death and cell cycle were investigated. PL effectively inhibited cell growth, impacted the cell cycle by decreasing the level of cyclins and CDK1 and increasing CDKN1A and triggered a caspase-3 independant cell death process in which reactive oxygen species (ROS) production is a major player. Indeed, PL toxicity in retinoblastoma cell lines was inhibited by a ROS scavenger N-acetyl-l-cysteine (NAC) treatment. These findings suggest that PL reduces tumor growth and induces cell death by regulating the cell cycle.
Collapse
Affiliation(s)
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
11
|
Chen D, Wang Y, Liu M, Cheng J, Liu Z, Song Y, Du J. Visfatin promotes angiogenesis of RF/6A cells through upregulation of VEGF/VEGFR-2 under high-glucose conditions. Exp Ther Med 2021; 21:389. [PMID: 33680111 PMCID: PMC7918108 DOI: 10.3892/etm.2021.9820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Visfatin is a type of adipocytokine that is highly expressed in the serum and vitreous of patients with diabetic retinopathy. The purpose of the present study was to investigate the effect and mechanism of visfatin on angiogenesis in RF/6A monkey chorioretinal retinal endothelial cells under high glucose (HG) conditions in vitro. RF/6A cells were randomly divided into four groups: Control group, under high glucose (HG) group (25 mM D-glucose), visfatin group 1 (10 nM visfatin + 25 mM D-glucose), visfatin group 2 (20 nM visfatin + 25 mM D-glucose) and visfatin group 3 (30 nM visfatin + 25 mM D-glucose). After 24 and 48 h, a Cell Counting Kit-8, wound-healing assay and Matrigel tube formation assay were used to detect cell proliferation, migration and cell tube formation, respectively. Subsequently, the expression levels of VEGF and VEGF receptor 2 (VEGFR-2) in cells of visfatin group 3 were observed by western blot and reverse transcription-quantitative PCR analyses. At 24 and 48 h, the cell proliferation and migration distance in the HG group were reduced compared with those in the control group (P<0.05). Compared with those in the HG group, the cell proliferation and migration distance in all visfatin groups were significantly increased (P<0.05), with the highest significance in visfatin group 3. Visfatin significantly promoted tube-like structure formation by RF/6A cells, particularly at the concentration of 30 nM. The protein and mRNA expression levels of VEGF and VEGFR-2 were significantly increased in the HG group as compared with those in the control group (P<0.05). Furthermore, compared with those in the HG group, VEGF and VEGFR-2 protein and mRNA expression levels were significantly increased in visfatin group 3 (P<0.05). Overall, visfatin promoted the proliferation, migration and tube formation of RF/6A cells under HG conditions, suggesting that visfatin has a potent effect on retinal neovascularization and its mechanism may be associated with the promotion of VEGF and VEGFR-2 expression under HG conditions.
Collapse
Affiliation(s)
- Dongjun Chen
- Department of Ophthalmology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yi Wang
- Department of Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Mengyi Liu
- Department of General Surgery, Nantaihu Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Jing Cheng
- Department of Ophthalmology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Zhe Liu
- Department of Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yang Song
- Department of Clinical Laboratory, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Junhui Du
- Department of Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
12
|
Bezerra DP. Piplartine (piperlongumine), oxidative stress, and use in cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Henrique T, Zanon CDF, Girol AP, Stefanini ACB, Contessoto NSDA, da Silveira NJF, Bezerra DP, Silveira ER, Barbosa-Filho JM, Cornélio ML, Oliani SM, Tajara EH. Biological and physical approaches on the role of piplartine (piperlongumine) in cancer. Sci Rep 2020; 10:22283. [PMID: 33335138 PMCID: PMC7746756 DOI: 10.1038/s41598-020-78220-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation provides a favorable microenvironment for tumorigenesis, which opens opportunities for targeting cancer development and progression. Piplartine (PL) is a biologically active alkaloid from long peppers that exhibits anti-inflammatory and antitumor activity. In the present study, we investigated the physical and chemical interactions of PL with anti-inflammatory compounds and their effects on cell proliferation and migration and on the gene expression of inflammatory mediators. Molecular docking data and physicochemical analysis suggested that PL shows potential interactions with a peptide of annexin A1 (ANXA1), an endogenous anti-inflammatory mediator with therapeutic potential in cancer. Treatment of neoplastic cells with PL alone or with annexin A1 mimic peptide reduced cell proliferation and viability and modulated the expression of MCP-1 chemokine, IL-8 cytokine and genes involved in inflammatory processes. The results also suggested an inhibitory effect of PL on tubulin expression. In addition, PL apparently had no influence on cell migration and invasion at the concentration tested. Considering the role of inflammation in the context of promoting tumor initiation, the present study shows the potential of piplartine as a therapeutic immunomodulator for cancer prevention and progression.
Collapse
Affiliation(s)
- Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Caroline de F Zanon
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana P Girol
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- Integrated College Padre Albino Foundation (FIPA), Catanduva, SP, 15806-310, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Nayara S de A Contessoto
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Nelson J F da Silveira
- Laboratory of Molecular Modeling and Computer Simulation/MolMod-CS, Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Edilberto R Silveira
- Department of Chemistry, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - José M Barbosa-Filho
- Laboratory of Pharmaceutics Technology, Federal University of Paraiba, João Pessoa, PB, 58051-900, Brazil
| | - Marinonio L Cornélio
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Sonia M Oliani
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
14
|
Zhu P, Qian J, Xu Z, Meng C, Liu J, Shan W, Zhu W, Wang Y, Yang Y, Zhang W, Zhang Y, Ling Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. JOURNAL OF NATURAL PRODUCTS 2020; 83:3041-3049. [PMID: 33026807 DOI: 10.1021/acs.jnatprod.0c00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The natural products piperlongumine and piperine have been shown to inhibit cancer cell proliferation through elevation of reactive oxidative species (ROS) and eventually cell death, but only have modest cytotoxic potencies. A series of 14 novel phenylallylidenecyclohexenone analogues based on piperlongumine and piperine therefore were designed and synthesized, and their pharmacological properties were evaluated. Most of the compounds produced antiproliferative activities against five human cancer cells with IC50 values lower than those of piperlongumine and piperine. Among these, compound 9m exerted the most potent antiproliferative activity against drug-resistant Bel-7402/5-FU human liver cancer 5-FU resistant cells (IC50 = 0.8 μM), which was approximately 10-fold lower than piperlongumine (IC50 = 8.4 μM). Further, 9m showed considerably lower cytotoxicity against LO2 human normal liver epithelial cells compared to Bel-7402/5-FU. Mechanistically, compound 9m inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, reduced mitochondrial transmembrane potential (MTP), and induced autophagy in Bel-7402/5-FU cells via regulation of autophagy-related proteins LC3, p62, and beclin-1. Finally, 9m activated significantly the p38 signaling pathways and suppressed the Akt/mTOR signaling pathways. In conclusion, 9m could be a promising candidate for the treatment of drug-resistant cancer cells and, as such, warrants further investigation.
Collapse
Affiliation(s)
- Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Weizhong Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Yumin Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Zhang J, Ren S, Sun D, Huang HY, Wang H, Jin Y, Li F, Zheng C, Yang L, Deng L, Jiang Z, Jiang T, Han X, Hou S, Guo C, Li F, Gao D, Qin J, Gao D, Chen L, Lin SH, Wong KK, Li C, Hu L, Zhou C, Ji H. Branched-Chain Amino Acid Metabolic Reprogramming Orchestrates Drug Resistance to EGFR Tyrosine Kinase Inhibitors. Cell Rep 2020; 28:512-525.e6. [PMID: 31291585 DOI: 10.1016/j.celrep.2019.06.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/12/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is a significant hindrance to effective cancer treatment. Although resistance mechanisms of epidermal growth factor receptor (EGFR) mutant cancer cells to lethal EGFR tyrosine kinase inhibitors (TKI) treatment have been investigated intensively, how cancer cells orchestrate adaptive response under sublethal drug challenge remains largely unknown. Here, we find that 2-h sublethal TKI treatment elicits a transient drug-tolerant state in EGFR mutant lung cancer cells. Continuous sublethal treatment reinforces this tolerance and eventually establishes long-term TKI resistance. This adaptive process involves H3K9 demethylation-mediated upregulation of branched-chain amino acid aminotransferase 1 (BCAT1) and subsequent metabolic reprogramming, which promotes TKI resistance through attenuating reactive oxygen species (ROS) accumulation. Combination treatment with TKI- and ROS-inducing reagents overcomes this drug resistance in preclinical mouse models. Clinical information analyses support the correlation of BCAT1 expression with the EGFR TKI response. Our findings reveal the importance of BCAT1-engaged metabolism reprogramming in TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Yuetong Wang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxiang Ren
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Dan Sun
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Wang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuming Li
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liu Yang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Deng
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhonglin Jiang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangkun Han
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shenda Hou
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Qin
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Lin A, Liu J, Gong P, Chen Y, Zhang H, Zhang Y, Yu Y. Serum amyloid A inhibits astrocyte migration via activating p38 MAPK. J Neuroinflammation 2020; 17:254. [PMID: 32861245 PMCID: PMC7456509 DOI: 10.1186/s12974-020-01924-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The accumulation of astrocytes around senile plaques is one of the pathological characteristics in Alzheimer's disease (AD). Serum amyloid A (SAA), known as a major acute-phase protein, colocalizes with senile plaques in AD patients. Here, we demonstrate the role of SAA in astrocyte migration. METHODS The effects of SAA on astrocyte activation and accumulation around amyloid β (Aβ) deposits were detected in APP/PS1 transgenic mice mated with Saa3-/- mice. SAA expression, astrocyte activation, and colocalization with Aβ deposits were evaluated in mice using immunofluorescence staining and/or Western blotting. The migration of primary cultures of mouse astrocytes and human glioma U251 cells was examined using Boyden chamber assay and scratch-would assay. The actin and microtubule networks, protrusion formation, and Golgi apparatus location in astrocytes were determined using scratch-would assay and immunofluorescence staining. RESULTS Saa3 expression was significantly induced in aged APP/PS1 transgenic mouse brain. Saa3 deficiency exacerbated astrocyte activation and increased the number of astrocytes around Aβ deposits in APP/PS1 mice. In vitro studies demonstrated that SAA inhibited the migration of primary cultures of astrocytes and U251 cells. Mechanistic studies showed that SAA inhibited astrocyte polarization and protrusion formation via disrupting actin and microtubule reorganization and Golgi reorientation. Inhibition of the p38 MAPK pathway abolished the suppression of SAA on astrocyte migration and polarization. CONCLUSIONS These results suggest that increased SAA in the brain of APP/PS1 mice inhibits the migration of astrocytes to amyloid plaques by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- Aihua Lin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Gong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqing Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haibo Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
19
|
Liu D, Qiu X, Xiong X, Chen X, Pan F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin Transl Oncol 2020; 22:1687-1697. [PMID: 32189139 PMCID: PMC7423792 DOI: 10.1007/s12094-020-02330-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is the fourth most common urological malignancy in the world, it has become the costliest cancer to manage due to its high rate of recurrence and lack of effective treatment modalities. As a natural byproduct of cellular metabolism, reactive oxygen species (ROS) have an important role in cell signaling and homeostasis. Although up-regulation of ROS is known to induce tumorigenesis, growing evidence suggests a number of agents that can selectively kill cancer cells through ROS induction. In particular, accumulation of ROS results in oxidative stress-induced apoptosis in cancer cells. So, ROS is a double-edged sword. A modest level of ROS is required for cancer cells to survive, whereas excessive levels kill them. This review summarizes the up-to-date findings of oxidative stress-regulated signaling pathways and transcription factors involved in the etiology and progression of BCa and explores the possible therapeutic implications of ROS regulators as therapeutic agents for BCa.
Collapse
Affiliation(s)
- D Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - X Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - X Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - X Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - F Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Chen D, Ma Y, Guo Z, Liu L, Yang Y, Wang Y, Pan B, Wu L, Hui Y, Yang W. Two Natural Alkaloids Synergistically Induce Apoptosis in Breast Cancer Cells by Inhibiting STAT3 Activation. Molecules 2020; 25:E216. [PMID: 31948057 PMCID: PMC6982934 DOI: 10.3390/molecules25010216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has become a worldwide threat, and chemotherapy remains a routine treatment. Patients are forced to receive continuous chemotherapy and suffer from severe side effects and poor prognosis. Natural alkaloids, such as piperine (PP) and piperlongumine (PL), are expected to become a new strategy against breast cancer due to their reliable anticancer potential. In the present study, cell viability, flow cytometry, and Western blot assays were performed to evaluate the suppression effect of PP and PL, alone or in combination. Data showed that PP and PL synergistically inhibited breast cancer cells proliferation at lower doses, while only weak killing effect was observed in normal breast cells, indicating a good selectivity. Furthermore, apoptosis and STAT3 signaling pathway-associated protein levels were analyzed. We demonstrated that PP and PL in combination inhibit STAT3 phosphorylation and regulate downstream molecules to induce apoptosis in breast cancer cells. Taken together, these results revealed that inactivation of STAT3 was a novel mechanism with treatment of PP and PL, suggesting that combination application of natural alkaloids may be a potential strategy for prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Zhiyu Guo
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Li Liu
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yaru Yang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yuru Wang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Bonan Pan
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Luyang Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Yuyu Hui
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Wenjuan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
21
|
Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8110553. [PMID: 31739520 PMCID: PMC6912225 DOI: 10.3390/antiox8110553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Piperlongumine (PL), a natural product derived from long pepper (Piper longum L.), is known to exhibit anticancer effects. However, the effect of PL on cell cycle-regulatory proteins in estrogen receptor (ER)-positive breast cancer cells is unclear. Therefore, we investigated whether PL can modulate the growth of ER-positive breast cancer cell line, MCF-7. We found that PL decreased MCF-7 cell proliferation and migration. Flow cytometric analysis demonstrated that PL induced G2/M phase cell cycle arrest. Moreover, PL significantly modulated the mRNA levels of cyclins B1 and D1, cyclin-dependent kinases 1, 4, and 6, and proliferating cell nuclear antigen. PL induced intracellular reactive oxygen species (hydrogen peroxide) accumulation and glutathione depletion. PL-mediated inhibition of IKKβ expression decreased nuclear translocation of NF-κB p65. Furthermore, PL significantly increased p21 mRNA levels. In conclusion, our data suggest that PL exerts anticancer effects in ER-positive breast cancer cells by inhibiting cell proliferation and migration via ROS accumulation and IKKβ suppression.
Collapse
|
22
|
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol 2019; 10:715. [PMID: 31417401 PMCID: PMC6682706 DOI: 10.3389/fphar.2019.00715] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Therapeutic and Pharmacology Department, Health and Human Science Research, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pedro Majano
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Toméro
- Department and Nephrology, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Rafael Selgas
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Manuel López-Cabrera
- Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Guadalupe González Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
23
|
Turkez H, Nóbrega FRD, Ozdemir O, Bezerra Filho CDSM, Almeida RND, Tejera E, Perez-Castillo Y, Sousa DPD. NFBTA: A Potent Cytotoxic Agent against Glioblastoma. Molecules 2019; 24:E2411. [PMID: 31261921 PMCID: PMC6651752 DOI: 10.3390/molecules24132411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Piplartine (PPL), also known as piperlongumine, is a biologically active alkaloid extracted from the Piper genus which has been found to have highly effective anticancer activity against several tumor cell lines. This study investigates in detail the antitumoral potential of a PPL analogue; (E)-N-(4-fluorobenzyl)-3-(3,4,5-trimethoxyphenyl) acrylamide (NFBTA). The anticancer potential of NFBTA on the glioblastoma multiforme (GBM) cell line (U87MG) was determined by 3-(4,5-dimethyl-2-thia-zolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) release analysis, and the selectivity index (SI) was calculated. To detect cell apoptosis, fluorescent staining via flow cytometry and Hoechst 33258 staining were performed. Oxidative alterations were assessed via colorimetric measurement methods. Alterations in expressions of key genes related to carcinogenesis were determined. Additionally, in terms of NFBTA cytotoxic, oxidative, and genotoxic damage potential, the biosafety of this novel agent was evaluated in cultured human whole blood cells. Cell viability analyses revealed that NFBTA exhibited strong cytotoxic activity in cultured U87MG cells, with high selectivity and inhibitory activity in apoptotic processes, as well as potential for altering the principal molecular genetic responses in U87MG cell growth. Molecular docking studies strongly suggested a plausible anti-proliferative mechanism for NBFTA. The results of the experimental in vitro human glioblastoma model and computational approach revealed promising cytotoxic activity for NFBTA, helping to orient further studies evaluating its antitumor profile for safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo, Italy
| | - Flávio Rogério da Nóbrega
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | | | | | - Eduardo Tejera
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil.
| |
Collapse
|
24
|
Chen D, Ma Y, Li P, Liu M, Fang Y, Zhang J, Zhang B, Hui Y, Yin Y. Piperlongumine Induces Apoptosis and Synergizes with Doxorubicin by Inhibiting the JAK2-STAT3 Pathway in Triple-Negative Breast Cancer. Molecules 2019; 24:E2338. [PMID: 31242627 PMCID: PMC6631638 DOI: 10.3390/molecules24122338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks major effective target molecules and chemotherapy remains the current main treatment. However, traditional chemotherapy drugs, such as doxorubicin (DOX), cause serious side effects and have a poor prognosis. Piperlongumine (PL), a natural alkaloid, has showed selective anticancer effects and is expected to become a new strategy against TNBC. In our research, cell viability, colony formation, flow cytometry, Western blot, and tumor xenograft model assays were established to evaluate the suppression effect of PL and DOX alone and in combination. Data showed that PL could effectively inhibit cell growth and induce apoptosis in two TNBC cell lines. We also demonstrated for the first time that the combination treatment of PL and DOX synergistically inhibited cell growth and induced apoptosis in TNBC cells. The suppression of STAT3 activation was indicated to be a mechanism of the anticancer effect. Moreover, the effectiveness of this combination was confirmed in a tumor xenograft model. These results revealed that inhibition of the JAK2-STAT3 pathway was a key anticancer mechanism when treated with PL alone or combined with DOX, suggesting that the combination of PL and chemotherapy drugs may be a potential strategy for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Peiqi Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Meng Liu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Yuan Fang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Jiejie Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Bilin Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China.
| | - Yuyu Hui
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yue Yin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
25
|
Zhou L, Li M, Yu X, Gao F, Li W. Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells. Int J Biol Sci 2019; 15:826-837. [PMID: 30906213 PMCID: PMC6429016 DOI: 10.7150/ijbs.31749] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China
| | - Xinyou Yu
- Shandong Lvdu Bio-Industry Co., Ltd., Binzhou, Shandong 256600, P.R. China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
Gagat M, Hałas-Wiśniewska M, Zielińska W, Izdebska M, Grzanka D, Grzanka A. The effect of piperlongumine on endothelial and lung adenocarcinoma cells with regulated expression of profilin-1. Onco Targets Ther 2018; 11:8275-8292. [PMID: 30538497 PMCID: PMC6255113 DOI: 10.2147/ott.s183191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of the study was to evaluate the effect of piperlongumine (2 and 4 µM) on endothelial EA.hy926 and lung adenocarcinoma A549 cells with regulated expression of profilin-1 (PFN1). Material and methods The cytotoxicity of alkaloid was evaluated by MTT assay, while cell death was assessed using double staining with annexin V and propidium iodide. Subsequently, the level of PFN1 1) upregulation in EA.hy926 endothelial cells and 2) downregulation in A549 lung adenocarcinoma cells. The next step was the analysis of the effect of PFN1 manipulation on cytoskeletal proteins. Results The results showed that piperlongumine may inhibit proliferation of EA.hy926 and A549 cell lines and also induce cell death in a dose-dependent manner. Furthermore, endothelial cells with PFN1 overexpression showed lower sensitivity to alkaloid and strengthening of cell-cell interactions. In the case of A549 cells, loss of PFN1 expression resulted in a lower percentage of early apoptotic cells, reorganization of F-actin and vimentin network, and reduction of migratory potential. Conclusion We suggest that upregulation of PFN1 in endothelial cell line may stabilize the cell junctions. In turn, PFN1 downregulation in A549 cells probably suppresses cell migration and sensitizes cells to anticancer agents.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland,
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland,
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland,
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland,
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland,
| |
Collapse
|
27
|
Lee HL, Hwang SC, Nah JW, Kim J, Cha B, Kang DH, Jeong YI. Redox- and pH-Responsive Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to Inhibit Pulmonary Metastasis of Colorectal Carcinoma Cells. J Pharm Sci 2018; 107:2702-2712. [PMID: 29936202 DOI: 10.1016/j.xphs.2018.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023]
Abstract
Redox-responsive nanoparticles having a diselenide linkage were synthesized to target pulmonary metastasis of cancer cells. Methoxy poly(ethylene glycol)-grafted chitosan (ChitoPEG) was crosslinked using selenocystine-acetyl histidine (Ac-histidine) conjugates (ChitoPEGse) for stimuli-responsive delivery of piperlongumine (PL). ChitoPEGse nanoparticles swelled in an acidic environment and became partially disintegrated in the presence of H2O2, resulting in an increase of particle size and in a size distribution having multimodal pattern. PL release increased under acidic conditions and in the presence of H2O2. Uptake of ChitoPEGse nanoparticles by CT26 cells significantly increased in acidic and redox state. PL-incorporated ChitoPEGse nanoparticles (PL NPs) showed similar anticancer activity in vitro against A549 and CT26 cells compared to PL itself. PL NP showed superior anticancer and antimetastatic activity in an in vivo CT26 cell pulmonary metastasis mouse model. Furthermore, an immunofluorescence imaging study demonstrated that PL NP conjugates were specifically delivered to the tumor mass in the lung. Conclusively, ChitoPEGse nanoparticles were able to be delivered to cancer cells with an acidic- or redox state-sensitive manner and then efficiently targeted pulmonary metastasis of cancer cells since ChitoPEGse nanoparticles have dual pH- and redox-responsiveness.
Collapse
Affiliation(s)
- Hye Lim Lee
- Ajou University, School of Medicine, Suwon 61005, Republic of Korea; Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea
| | - Sung Chul Hwang
- Ajou University, School of Medicine, Suwon 61005, Republic of Korea
| | - Jae Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Jeonnam 57922, Republic of Korea
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea
| | | | - Dae Hwan Kang
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea; Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| |
Collapse
|
28
|
Jin H, Zhao Y, Yang J, Zhang X, Ma S. Hyperthermia enhances the sensitivity of pancreatic cancer SW1990 cells to gemcitabine through ROS/JNK signaling. Oncol Lett 2018; 16:6742-6748. [PMID: 30405817 DOI: 10.3892/ol.2018.9455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/25/2018] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive type of cancer. Gemcitabine (GEM) is a standard chemotherapeutic treatment of advanced PC; however, it requires improvement, and more effective therapeutic methods must be further explored. In the present study, hyperthermia combined with GEM was used on the PC cell line SW1990. The results revealed that mild hyperthermia (at 42°C) effectively increased the inhibitory effect of GEM on cell viability, as determined using an MTT assay, and increased the effect of GEM-induced apoptosis, as determined using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, in PC SW1990 cells. Additionally, it resulted in increased S-phase arrest, downregulated the expression of the anti-apoptosis protein B-cell lymphoma 2 and upregulated the expression of the pro-apoptosis protein Bcl-2-associated X protein, cleaved caspase-3 and cleaved caspase-9, as determined using a reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, it was revealed that hyperthermia resulted in the rapid generation of reactive oxygen species (ROS) and substantial activation of c-Jun-N-terminal kinase (JNK). The introduction of ROS and JNK inhibitors suppressed hyperthermia-induced apoptosis in GEM-treated cells, suggesting that hyperthermia increased GEM cytotoxicity in PC SW1990 cells by inducing apoptosis via the ROS/JNK signaling pathway.
Collapse
Affiliation(s)
- Hangbin Jin
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China.,Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yanyan Zhao
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
29
|
Piska K, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Pękala E. Piperlongumine (piplartine) as a lead compound for anticancer agents - Synthesis and properties of analogues: A mini-review. Eur J Med Chem 2018; 156:13-20. [PMID: 30006159 DOI: 10.1016/j.ejmech.2018.06.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
Abstract
Piperlongumine, also known as piplartine, is an amide alkaloid of Piper longum L. (long piper), a medical plant known from Ayurvedic medicine. Although was discovered well over fifty years ago, its pharmacological properties have been uncovered in the past decade. In particular, piperlongumine has been most extensively studied as a potential anticancer agent. Piperlongumine has exhibited cytotoxicity against a broad spectrum of human cancer cell lines, as well as demonstrated antitumor activity in rodents. Piperlongumine has also been found to be a proapoptotic, anti-invasive, antiangiogenic agent and synergize with modern chemotherapeutic agents. Because of its clinical potential, several studies were undertaken to obtain piperlongumine analogues, which have exhibited more potent activity or more appropriate drug-like parameters. In this review, the synthesis of piperlongumine analogues and piperlongumine-based hybrid compounds, as well as their anticancer properties and the molecular basis for their activity are explored. General structure-activity relationship conclusions are drawn and directions for the future research are indicated.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
30
|
Luan L, Ma Y, Zhang L. HOXD10 silencing suppresses human fibroblast-like synoviocyte migration in rheumatoid arthritis via downregulation of the p38/JNK pathway. Exp Ther Med 2018; 16:1621-1628. [PMID: 30186380 PMCID: PMC6122097 DOI: 10.3892/etm.2018.6432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Homeobox D10 (HOXD10) belongs to the human homeobox (HOX) gene family, and the homologous protein encoded by HOX primarily controls cell differentiation and morphogenesis during embryonic development. The current study aimed to explore the roles and mechanisms of HOXD10 in the migration of human fibroblast-like synoviocytes in rheumatoid arthritis (RAFLS). Cell counting kit-8, cell migration and wound healing assays were performed to examine the cell viability and migration, respectively. Western blot and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the association between mRNA and protein expression levels. The results revealed HOXD10 expression was upregulated in tissues from patients with RA. HOXD10 silencing inhibited the viability of RAFLS. In addition, HOXD10 silencing suppressed the migration of RAFLS through modulating the expression of cadherin-11, N-cadherin, E-cadherin, vimentin, zonula occludens-1, integrinβ1 and paxillin. In conclusion, HOXD10 silencing downregulates the p38/c-Jun N-terminal kinase signaling pathway, which in turn may suppress the migration of RAFLS.
Collapse
Affiliation(s)
- Luan Luan
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Yingying Ma
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Lihua Zhang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
31
|
Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 2018; 52:1011-1022. [PMID: 29393418 DOI: 10.3892/ijo.2018.4259] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer with a mortality rate of almost 95%. Treatment with current chemotherapeutic drugs has limited success due to poor responses. Therefore, the development of novel drugs or effective combination therapies is urgently required. Piperlongumine (PL) is a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular reactive oxygen species (ROS) levels. In the present study, we demonstrated that PL induced cancer cell death through, at least in part, the induction of ferroptosis, as the cancer cell-killing activity was inhibited by the antioxidant, N‑acetylcysteine, ferroptosis inhibitors (ferrostatin‑1 and liproxstatin‑1) and the iron chelator, deferoxamine (DFO), but not by the apoptosis inhibitor, Z-VAD-FMK, or the necrosis inhibitor, necrostatin‑1. Cotylenin A (CN‑A; a plant growth regulator) exhibits potent antitumor activities in several cancer cell lines, including pancreatic cancer cell lines. We found that CN‑A and PL synergistically induced the death of pancreatic cancer MIAPaCa‑2 and PANC‑1 cells for 16 h. CN‑A enhanced the induction of ROS by PL for 4 h. The synergistic induction of cell death was also abrogated by the ferroptosis inhibitors and DFO. The present results revealed that clinically approved sulfasalazine (SSZ), a ferroptosis inducer, enhanced the death of pancreatic cancer cells induced by PL and the combined effects were abrogated by the ferroptosis inhibitors and DFO. SSZ further enhanced the cancer cell-killing activities induced by combined treatment with PL plus CN‑A. On the other hand, the synergistic induction of cell death by PL and CN‑A was not observed in mouse embryonic fibroblasts (MEFs), and SSZ did not enhance the death of MEFs induced by PL plus CN‑A. These results suggest that the triple combined treatment with PL, CN‑A and SSZ is highly effective against pancreatic cancer.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
32
|
Seok JS, Jeong CH, Petriello MC, Seo HG, Yoo H, Hong K, Han SG. Piperlongumine decreases cell proliferation and the expression of cell cycle-associated proteins by inhibiting Akt pathway in human lung cancer cells. Food Chem Toxicol 2018; 111:9-18. [PMID: 29109039 DOI: 10.1016/j.fct.2017.10.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Piperlongumine (PL) is an alkaloid of a pepper plant found in Southeast Asia. PL is known to induce selective toxicity towards a variety of cancer cell types. To explore the possible anti-lung cancer effects of PL, A549 cells were treated with PL (0-40 μM) for 24 h. Alterations in the expression of cell cycle-associated proteins (cyclin D1, cyclin-dependent kinase 4 (CDK4), CDK6 and retinoblastoma (Rb)) and intracellular signaling molecules (extracellular signal receptor-activated kinase 1/2 (ERK1/2), Akt, p38 and nuclear factor-κB (NF-κB)) were examined in cells following treatment of PL using Western blot analysis. Results showed that proliferation of cells were significantly decreased by PL in a dose-dependent manner. Flow cytometry results demonstrated increased number of cells in G1 phase in PL (40 μM)-treated group. Reactive oxygen species was significantly increased in cells treated with PL at 20-40 μM. The expression of cyclin D1, CDK4, CDK6 and p-Rb were markedly decreased in cells treated with PL at 40 μM. Treatment of cells with PL suppressed phosphorylation of Akt but increased ERK1/2 phosphorylation. Treatment of PL significantly decreased nuclear translocation of NF-κB p65 in cells. These results suggest that PL possesses antiproliferative properties in A549 cells.
Collapse
Affiliation(s)
- Jin Sil Seok
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Hee Jeong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Michael C Petriello
- Superfund Research Center, Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Liu D, Qiu XY, Wu X, Hu DX, Li CY, Yu SB, Pan F, Chen XQ. Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization. Biochem Biophys Res Commun 2017; 494:165-172. [PMID: 29037814 DOI: 10.1016/j.bbrc.2017.10.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Piperlongumine (PL), a natural alkaloid isolated from longer pepper plants, is recently found to be a potent selective anti-cancer compound. We first tested its anti-cancer effects on bladder cancer, the fifth most common and aggressive cancer worldwide, to further explore the therapeutic spectrum and molecular mechanisms of PL. PL significantly suppressed bladder cancer cell proliferation, the transition of G2/M phase to next phase, migration/invasion in vitro and bladder cancer growth/development in vivo. PL markedly elevated reactive oxygen species (ROS) and the administration of antioxidants abolished PL induced cell proliferation inhibition, G2/M phase arrest and migration suppression on bladder cancer cells. In vivo studies demonstrated that PL inhibited epithelial mesenchymal transition with profoundly decreased level of Slug, β-catenin, ZEB1 and N-Cadherin. Further, we first reported PL effects on cytoskeleton with prominently reduced lamellipodia formation and decreased F-actin intensity in bladder cancer cells. Taken together, our results first revealed that PL suppressed bladder cancer proliferation and migration in vivo and in vitro, suggesting novel mechanism underlying PL's anti-cancer effect and providing a new anticancer drug strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Yang Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shang Bin Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Thongsom S, Suginta W, Lee KJ, Choe H, Talabnin C. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway. Apoptosis 2017; 22:1473-1484. [PMID: 28913568 DOI: 10.1007/s10495-017-1422-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive, metastatic bile duct cancer. CCA is difficult to diagnose, and responds poorly to current radio- and chemo-therapy. Piperlongumine (PL) is a naturally-occurring small molecule selectively toxic to cancer cells by targeting reactive oxygen species (ROS). In this study, we demonstrated the potential anticancer activity of PL in CCA. PL markedly induced death in CCA cell lines in a dose- and time-dependent manner through the activation of caspase-3 and PARP. PL also stimulated ROS accumulation in CCA. Co-exposure of PL with the ROS scavenger N-acetyl-L-cysteine or GSH completely blocked PL-induced apoptosis in CCA cell lines. Increased p21 via the p53-independent pathway in PL-treated CCA cells led to G2/M phase arrest and cell apoptosis. In addition, the study showed that PL trigger CCA cell lines death through JNK-ERK activation. Furthermore, the different antioxidant capacity of CCA cell lines also indicates the susceptibility of the cells to PL treatment. Our findings reveal that PL exhibits anti-tumor activity and has potential to be used as a chemotherapeutic agent against CCA.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Center of Excellence on Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Han Choe
- Department of Physiology, Asan-Minnesota Institute for Innovating Transplantation, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| | - Chutima Talabnin
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
35
|
In vitro and in vivo evaluation of gastro-retentive carvedilol loaded chitosan beads using Gastroplus™. Int J Biol Macromol 2017; 102:642-650. [DOI: 10.1016/j.ijbiomac.2017.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022]
|
36
|
Mathew C, Ghildyal R. CRM1 Inhibitors for Antiviral Therapy. Front Microbiol 2017; 8:1171. [PMID: 28702009 PMCID: PMC5487384 DOI: 10.3389/fmicb.2017.01171] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1) is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB) is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.
Collapse
Affiliation(s)
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Health Research Institute, University of CanberraCanberra, ACT, Australia
| |
Collapse
|
37
|
Xiao ZX, Chen RQ, Hu DX, Xie XQ, Yu SB, Chen XQ. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme. Biochem Biophys Res Commun 2017; 488:33-39. [PMID: 28476618 DOI: 10.1016/j.bbrc.2017.04.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the gene expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients.
Collapse
Affiliation(s)
- Zui Xuan Xiao
- Department of Endocrinology, Jingzhou First People's Hospital, The First Clinical Medical College, Yangtze University, Jingzhou 434100, China
| | - Ruo Qiao Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Qiang Xie
- Department of Pathology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, China.
| | - Shang Bin Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
38
|
Zhang L, Li L, Gao G, Wei G, Zheng Y, Wang C, Gao N, Zhao Y, Deng J, Chen H, Sun J, Li D, Zhang X, Liu M. Elevation of GPRC5A expression in colorectal cancer promotes tumor progression through VNN-1 induced oxidative stress. Int J Cancer 2017; 140:2734-2747. [PMID: 28316092 DOI: 10.1002/ijc.30698] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/23/2017] [Accepted: 02/23/2017] [Indexed: 12/24/2022]
Abstract
The clearance of oxidative stress compounds is critical for the protection of the organism from malignancy, but how this key physiological process is regulated is not fully understood. Here, we found that the expression of GPRC5A, a well-characterized tumor suppressor in lung cancer, was elevated in colorectal cancer tissues in patients. In both cancer cell lines and a colitis-associated cancer model in mice, we found that GPRC5A deficiency reduced cell proliferation and increased cell apoptosis as well as inhibited tumorigenesis in vivo. Through RNA-Seq transcriptome analysis, we identified oxidative stress associated pathways were dysregulated. Moreover, in GPRC5A deficient cells and mouse tissues, the oxidative agents were reduced partially due to increased glutathione (GSH) level. Mechanistically, GPRC5A regulates NF-κB mediated Vanin-1 expression which is the predominant enzyme for cysteamine generation. Administration of cystamine (the disulfide form of cysteamine) in GPRC5A deficient cell lines inhibited γ-GCS activity, leading to reduction of GSH level and increase of cell growth. Taken together, our studies suggest that GPRC5a is a potential biomarker for colon cancer and promotes tumorigenesis through stimulation of Vanin-1 expression and oxidative stress in colitis associated cancer. This study revealed an unexpected oncogenic role of GPRC5A in colorectal cancer suggesting there are complicated functional and molecular mechanism differences of this gene in distinct tissues.
Collapse
Affiliation(s)
- Long Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Liang Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ganglong Gao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Southern Medical University, Fengxian Hospital, Shanghai, 201499, China
| | - Gaigai Wei
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yansen Zheng
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chunmei Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Na Gao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongliang Zhao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiong Deng
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai, 200025, China
| | - Huaqing Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialiang Sun
- Southern Medical University, Fengxian Hospital, Shanghai, 201499, China
| | - Dali Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueli Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Southern Medical University, Fengxian Hospital, Shanghai, 201499, China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX
| |
Collapse
|
39
|
Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed Pharmacother 2017; 85:303-312. [DOI: 10.1016/j.biopha.2016.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/23/2023] Open
|
40
|
Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 2016; 8:2915-2926. [PMID: 27913811 PMCID: PMC5191878 DOI: 10.18632/aging.101100] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 04/16/2023]
Abstract
Accumulating evidence indicates that senescent cells play an important role in many age-associated diseases. The pharmacological depletion of senescent cells (SCs) with a "senolytic agent", a small molecule that selectively kills SCs, is a potential novel therapeutic approach for these diseases. Recently, we discovered ABT-263, a potent and highly selective senolytic agent, by screening a library of rationally-selected compounds. With this screening approach, we also identified a second senolytic agent called piperlongumine (PL). PL is a natural product that is reported to have many pharmacological effects, including anti-tumor activity. We show here that PL preferentially killed senescent human WI-38 fibroblasts when senescence was induced by ionizing radiation, replicative exhaustion, or ectopic expression of the oncogene Ras. PL killed SCs by inducing apoptosis, and this process did not require the induction of reactive oxygen species. In addition, we found that PL synergistically killed SCs in combination with ABT-263, and initial structural modifications to PL identified analogs with improved potency and/or selectivity in inducing SC death. Overall, our studies demonstrate that PL is a novel lead for developing senolytic agents.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Suping Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
41
|
Yao Y, Sun Y, Shi M, Xia D, Zhao K, Zeng L, Yao R, Zhang Y, Li Z, Niu M, Xu K. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells. Oncotarget 2016; 7:73497-73508. [PMID: 27634873 PMCID: PMC5341994 DOI: 10.18632/oncotarget.11988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Effective new therapies are urgently needed for the treatment of multiple myeloma (MM), an incurable hematological malignancy. In this study, we evaluated the effects of piperlongumine on MM cell proliferation both in vivo and in vitro. Piperlongumine inhibited the proliferation of MM cells by inducing cell apoptosis and blocking osteoclastogenesis. Notably, piperlongumine also reduced bortezomib resistance in MM cells. In a disseminated MM mouse model, piperlongumine prolonged the survival of tumor-bearing mice without causing any obvious toxicity. Mechanistically, piperlongumine inhibited the STAT3 signal pathway in MM cells by binding directly to the STAT3 Cys712 residue. These findings suggest that the clinical use of piperlongumine to overcome bortezomib resistance in MM should be evaluated.
Collapse
Affiliation(s)
- Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Min Shi
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Dandan Xia
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kai Zhao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ruosi Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ying Zhang
- Laboratory of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| |
Collapse
|
42
|
Dhillon H, Mamidi S, McClean P, Reindl KM. Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways. J Med Food 2016; 19:578-85. [PMID: 27119744 PMCID: PMC4904158 DOI: 10.1089/jmf.2015.0152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Piperlongumine (PL), an alkaloid obtained from long peppers, displays antitumorigenic properties for a variety of human cell- and animal-based models. The aim of this study was to identify the underlying molecular mechanisms for PL anticancer effects on human pancreatic cancer cells. RNA sequencing (RNA-seq) was used to identify the effects of PL on the transcriptome of MIA PaCa-2 human pancreatic cancer cells. PL treatment of pancreatic cancer cells resulted in differential expression of 683 mRNA transcripts with known protein functions, 351 of which were upregulated and 332 of which were downregulated compared to control-treated cells. Transcripts associated with oxidative stress, endoplasmic reticulum (ER) stress, and unfolded protein response pathways were significantly overexpressed with PL treatment. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to validate the RNA-seq results, which included upregulation of HO-1, IRE1α, cytochrome c, and ASNS. The results provide key insight into the mechanisms by which PL alters cancer cell physiology and identify that activation of oxidative stress and ER stress pathways is a critical avenue for PL anticancer effects.
Collapse
Affiliation(s)
- Harsharan Dhillon
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
43
|
Chen SY, Liu GH, Chao WY, Shi CS, Lin CY, Lim YP, Lu CH, Lai PY, Chen HR, Lee YR. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence. Int J Mol Sci 2016; 17:E616. [PMID: 27120594 PMCID: PMC4849064 DOI: 10.3390/ijms17040616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.
Collapse
Affiliation(s)
- San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
- Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Geng-Hung Liu
- Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan City 736, Taiwan.
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Chiayi 613, Taiwan.
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Peng-Yeh Lai
- Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Hau-Ren Chen
- Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Ying-Ray Lee
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan City 736, Taiwan.
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| |
Collapse
|
44
|
Niu M, Xu X, Shen Y, Yao Y, Qiao J, Zhu F, Zeng L, Liu X, Xu K. Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity. Chem Biol Interact 2015; 237:66-72. [PMID: 26026911 DOI: 10.1016/j.cbi.2015.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 11/26/2022]
Abstract
Piperlongumine is a natural compound recently identified to be toxic selectively to tumor cells in vitro and in vivo. However, the molecular mechanism underlying its anti-tumor action still remains unclear. In this report, we describe another novel mechanism by which piperlongumine mediates its anti-tumor effects. We found that piperlongumine is a novel nuclear export inhibitor. Piperlongumine could induce nuclear retention of tumor suppressor proteins and inhibit the interactions between CRM1 and these proteins. Piperlongumine could directly bind to the conserved Cys528 of CRM1 but not to a Cys528 mutant peptide. More importantly, cancer cells expressing mutant CRM1 (C528S) are resistant to piperlongumine, demonstrating the nuclear export inhibition via direct interaction with Cys528 of CRM1. The inhibition of nuclear export by piperlongumine may account for its therapeutic properties in cancer diseases. Our findings provide a good starting point for development of novel CRM1 inhibitors.
Collapse
Affiliation(s)
- Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaoyu Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yangling Shen
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
45
|
Sun LD, Wang F, Dai F, Wang YH, Lin D, Zhou B. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem Pharmacol 2015; 95:156-69. [PMID: 25850000 DOI: 10.1016/j.bcp.2015.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents.
Collapse
Affiliation(s)
- Lan-Di Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fu Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Dong Lin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China.
| |
Collapse
|
46
|
Chen Y, Liu JM, Xiong XX, Qiu XY, Pan F, Liu D, Lan SJ, Jin S, Yu SB, Chen XQ. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget 2015; 6:6406-21. [PMID: 25788268 PMCID: PMC4467445 DOI: 10.18632/oncotarget.3444] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/21/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically.
Collapse
Affiliation(s)
- Yong Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Mei Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Pan
- Department of Urology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Jue Lan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Shang Bin Yu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Xiong XX, Liu JM, Qiu XY, Pan F, Yu SB, Chen XQ. Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways. Acta Pharmacol Sin 2015; 36:362-74. [PMID: 25619389 PMCID: PMC4349924 DOI: 10.1038/aps.2014.141] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/13/2014] [Indexed: 01/26/2023] Open
Abstract
AIM To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. METHODS Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. RESULTS PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 μmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 μmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. CONCLUSION Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/drug effects
- Cell Survival/drug effects
- Dioxolanes/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation
- Humans
- Inhibitory Concentration 50
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- Phosphorylation
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xin-xin Xiong
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ju-mei Liu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin-yao Qiu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Pan
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shang-bin Yu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-qian Chen
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
48
|
Wang XQ, Wang YC, Guo YT, Tang X. Effect of piperlongumine on drug resistance reversal in human retinoblastoma HXO-RB44/VCR and SO-Rb50/CBP cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2525-34. [PMID: 26045758 PMCID: PMC4440067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Piperlongumine (PLGM) was considered as an anti-cancer agent since it was involved in suppressing of many types of cancer. To investigate the functions and mechanisms of PLGM on drug resistance reversal in human retinoblastoma cell lines, drug resistance cell lines HXO-RB44/VCR and SO-Rb50/CBP were established. We found that after treatment with PLGM, drug sensitivity and apoptosis rate of these drug resistance cancer cells were improved, cell cycle was arrested, the expressions of P-gp, MDR1, MRP1, Top-II, GST-π, Survivin, Bcl-2, CDK1, ABCB1 and ABCG1 was decreased, while the activities of caspase-3/8 and intracellular content of Rh-123 was increased. Furthermore, the activities of PI3K/AKT and PKCζ pathways were suppressed following PLGM treatment. Therefore, this study suggests that PLGM could reverse the drug resistance of human retinoblastoma cell lines HXO-RB44/VCR and SO-Rb50/CBP. This drug resistance reversing effect might exert via PI3K/AKT and PKCζ pathways.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University Tianjin 300020, China
| | - Yu-Chuan Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University Tianjin 300020, China
| | - Ya-Tu Guo
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University Tianjin 300020, China
| | - Xin Tang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University Tianjin 300020, China
| |
Collapse
|