1
|
Liu J, Hu N, Zheng X, Li H, Zhao K, Wang J, Zhang M, Zhang L, Song L, Lyu Y, Cui M, Ding L, Wang J. Vaginal micro-environment disorder promotes malignant prognosis of low-grade cervical intraepithelial neoplasia: a prospective community cohort study in Shanxi Province, China. Clin Transl Oncol 2024; 26:2738-2748. [PMID: 38769216 DOI: 10.1007/s12094-024-03524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Emerging evidence suggests that vaginal micro-environment disorder is closely related to the development of cervical lesions. Low-grade cervical intraepithelial neoplasia (CIN1), as an early stage of cervical lesions, exhibits a high risk of progressing to high-grade lesions or even cervical cancer. However, the effect of vaginal micro-environment on the malignant prognosis of CIN1 remains uncertain. METHODS A total of 504 patients diagnosed with CIN1 by pathology, who were from the population-based cohorts established in Shanxi Province, China, were enrolled and followed up for 2 years. Micro-environmental factors such as vaginal pH, cleanliness, hydrogen peroxide (H2O2), β-glucuronidase (GUSB), leucocyte esterase (LE), and sialidase (SNA) were detected to evaluate their effect on the malignant prognosis of CIN1. RESULTS Abnormal vaginal pH (HR = 1.472, 95%CI 1.071-2.022), cleanliness (HR = 1.446, 95%CI 1.067-1.960), H2O2 (HR = 1.525, 95%CI 1.155-2.013), GUSB (HR = 1.739, 95%CI 1.235-2.448), LE (HR = 1.434, 95%CI 1.038-1.981), and SNA (HR = 1.411, 95%CI 1.065-1.870) could promote a higher incidence of CIN1 malignant prognosis, and the combined effects of these micro-environmental factors resulted in a nearly twofold increased risk (HR = 2.492, 95%CI 1.773-3.504) compared to any single factor alone, especially under the high-risk human papillomavirus (HR-HPV) infection. Notably, the cumulative incidence of malignant prognosis for CIN1 gradually increased during the early follow-up period, reaching its peak at approximately 8 months, and then stabilizing. CONCLUSION Vaginal micro-environment disorder could promote CIN1 malignant prognosis, particularly in HR-HPV-infected women. Taking micro-environmental factors as the breakthrough, our study provides a feasible vision for preventing early stage cervical lesions.
Collapse
Affiliation(s)
- Jiamin Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Hu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao Zheng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Huimin Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Kailu Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiahao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Mingxuan Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Le Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Meng Cui
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Ault-Seay TB, Moorey SE, Mathew DJ, Schrick FN, Pohler KG, McLean KJ, Myer PR. Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Once thought to be sterile, the reproductive tract microbiome has been characterized due to the transition from culture-dependent identification of bacteria to culture-independent sequencing methods. The urogenital microbiome was first identified in women through the Human Microbiome Project, which led to research in other species such as the bovine. Previous research focused on uterine bacteria associated with postpartum disease, but next generation sequencing methods identified a normal, healthy bacterial community of the reproductive tract of cows and heifers. Bacterial communities are now understood to differ between the uterus and vagina, and throughout the estrous cycle with changes in hormone dominance. In a healthy state, the bacterial communities largely interact with the uterine environment by assisting in maintaining the proper pH, providing and utilizing nutrients and metabolites, and influencing the immunological responses of the reproductive tract. If the bacterial communities become unbalanced due to an increase in potentially pathogenic bacteria, the health and fertility of the host may be affected. Although the presence of a reproductive tract microbiome has become widely accepted, the existence of a placental microbiome and in utero colonization of the fetus is still a popular debate due to conflicting study results. Currently, researchers are evaluating methods to manipulate the reproductive bacterial communities, such as diet changes and utilizing probiotics, to improve reproductive outcomes. The following review discusses the current understanding of the reproductive tract microbiome, how it differs between humans and cattle, and its relationship with the uterine environment.
Collapse
|
3
|
Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters. NANOMATERIALS 2022; 12:nano12111823. [PMID: 35683677 PMCID: PMC9182127 DOI: 10.3390/nano12111823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.
Collapse
|
4
|
Abstract
Postpartum uterine diseases are common in dairy cows and are a great concern for the dairy industry as they are associated with various consequences, including lower fertility, lower milk yield, and an overall negative impact on the host health. An infected uterus is a source of bacterial compounds and cytokines that spill into the systemic circulation, spreading inflammation to other organs. In this review article, we discuss a short overview of the anatomy of the reproductive tract of dairy cows and several infectious diseases of the uterus including metritis, endometritis, and pyometra. Additionally, we discuss the microbiome of the reproductive tract in health and during uterine diseases. As well, diagnostic criteria for metritis and endometritis and contributing factors for increased susceptibility to metritis infection are important topics of this review. To better understand how the uterus and reproductive tract respond to bacterial pathogens, a section of this review is dedicated to immunity of the reproductive tract. Both the innate and adaptive immunity systems are also discussed. We conclude the review with a factual discussion about the current treatments of uterine diseases and the new developments in the area of application of probiotics for uterine health. Mechanisms of actions of probiotics are discussed in detail and also some applications to prevent uterine infections in dairy cows are discussed.
Collapse
|
5
|
Li L, Ding L, Gao T, Lyu Y, Wang M, Song L, Li X, Gao W, Han Y, Jia H, Wang J. Association between Vaginal Micro-environment Disorder and Cervical Intraepithelial Neoplasia in a Community Based Population in China. J Cancer 2020; 11:284-291. [PMID: 31897224 PMCID: PMC6930421 DOI: 10.7150/jca.35022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
There are other factors that contribute to cervical carcinogenesis except HPV infection. This study aimed to investigate the association between vaginal micro-environment factors, including H2O2, vaginal PH value, vagina cleanness, β-glucuronidase, coagulase, neuraminidase and leukocyte esterase and cervical intraeipithelial neoplasia (CIN). In total 1019 participants, including 623 normal cervical (NC) women, 303 patients with low-grade cervical intraepithelial neoplasia (CIN1) and 93 patients with high-grade cervical intraepithelial neoplasia (CIN2/3), were enrolled into the study. HPV genotyping was detected by flow-through hybridization and gene chip. Vaginal H2O2, β-glucuronidase, coagulase, neuraminidase and leukocyte esterase were detected by Aerobic Vaginitis (AV) / Bacterial Vaginal Disease (BV) Five Joint Test Kit. Vaginal PH was measured on the glass slide after microscopy, using color strips with a PH range of 3.8-5.4. Vagina cleanness was determined according to the National Clinical Laboratory Practice Guideline. χ2test and Logistic regression were operated using SPSS 22.0 software. Our results showed that HPV16 infection rate and the abnormal rates of H2O2, PH, vagina cleanness, β-glucuronidase or neuraminidase increased gradually along with the severity of CIN (P<0.05). Abnormities of H2O2, cleanness, β-glucuronidase and neuraminidase were risk factors for CIN regardless of HPV16 infection, furthermore, abnormities of PH value, leukocyte esterase could also increase the risk of CIN in HPV16 positive group. In addition, women with abnormal vaginal micro-environment factors in HPV16 positive group had a significantly higher risk of developing CIN than HPV16 negative group. The results from generalized multifactor dimensionality reduction (GMDR) model showed that there was interaction effect with abnormities of vagina cleanness, H2O2, β-glucuronidase and neuraminidase on CIN2/3 in HPV16 negative group, while, there was interaction effect with abnormities of vagina cleanness, β-glucuronidase and neuraminidase on CIN1 and with abnormities of vagina cleanness, PH, H2O2, β-glucuronidase, neuraminidase and leukocyte esterase on CIN2/3 in HPV16 positive group. Our results suggested that vaginal micro-environment disorder could increase the risk of CIN, especially, the abnormality of H2O2, cleanness, β-glucuronidase and neuraminidase. There were interaction effects with abnormities of H2O2, vagina cleanness, β-glucuronidase and neuraminidase on CIN whether HPV16 was infected or not.
Collapse
Affiliation(s)
- Li Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Tao Gao
- Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
| | - Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ming Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoxue Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wen Gao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yang Han
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Van Ostade X, Dom M, Tjalma W, Van Raemdonck G. Candidate biomarkers in the cervical vaginal fluid for the (self-)diagnosis of cervical precancer. Arch Gynecol Obstet 2017; 297:295-311. [PMID: 29143101 PMCID: PMC5778162 DOI: 10.1007/s00404-017-4587-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Purpose Despite improvement in vaccines against human papilloma virus (HPV), the causative agent of cervical cancer, screening women for cervical precancer will remain indispensable in the coming 30–40 years. A simple test that could be performed at home or at a doctor’s practice and that informs the woman whether she is at risk would significantly help make a broader group of patients who aware that they need medical treatment. Cervical vaginal fluid (CVF) is a body fluid that is very well suited for such a test. Methods Narrative review of cervical (pre)cancer candidate biomarkers from cervicovaginal fluid, is based on a detailed review of the literature. We will also discuss the possibilities that these biomarkers create for the development of a self-test or point-of-care test for cervical (pre)cancer. Results Several DNA, DNA methylation, miRNA, and protein biomarkers were identified in the cervical vaginal fluid; however, not all of these biomarkers are suited for development of a simple diagnostic assay. Conclusions Proteins, especially alpha-actinin-4, are most suited for development of a simple assay for cervical (pre)cancer. Accuracy of the test could further be improved by combination of several proteins or by combination with a new type of biomarker, e.g., originating from the cervicovaginal microbiome or metabolome.
Collapse
Affiliation(s)
- Xaveer Van Ostade
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium. .,Centre for Proteomics (CfP), University of Antwerp, Wilrijk, Belgium.
| | - Martin Dom
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium.,Centre for Proteomics (CfP), University of Antwerp, Wilrijk, Belgium
| | - Wiebren Tjalma
- Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Multidisciplinary Breast Clinic, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Geert Van Raemdonck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium.,Centre for Proteomics (CfP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Role of microbial flora in female genital tract: A comprehensive review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61155-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|