1
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Na Nongkhai T, Maddocks SE, Phosri S, Sangthong S, Pintathong P, Chaiwut P, Chandarajoti K, Nahar L, Sarker SD, Theansungnoen T. In Vitro Cytotoxicity and Antimicrobial Activity against Acne-Causing Bacteria and Phytochemical Analysis of Galangal ( Alpinia galanga) and Bitter Ginger ( Zingiber zerumbet) Extracts. Int J Mol Sci 2024; 25:10869. [PMID: 39456652 PMCID: PMC11507346 DOI: 10.3390/ijms252010869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Galangal (Alpinia galanga (L.) Willd) and bitter ginger (Zingiber zerumbet (L.) Roscoe) are aromatic rhizomatous plants that are typically used for culinary purposes. These rhizomatous plants have many biological properties and the potential to be beneficial for pharmaceutics. In this study, we evaluated the antioxidant and antimicrobial activities, with a specific focus on acne-causing bacteria, as well as the phytochemical constituents, of different parts of galangal and bitter ginger. The rhizomes, stems, and leaves of galangal and bitter ginger were separately dried for absolute ethanol and methanol extractions. The extracts were used to evaluate the antioxidant activity using a DPPH radical scavenging assay (0.005-5000 μg/mL), antimicrobial activity against acne-causing bacteria (0.50-31.68 mg/mL), and in vitro cytotoxicity toward human keratinocytes and fibroblasts (62.5-1000 μg/mL), as well as analyses of bioactive phytochemicals via GC-MS and LC-MS/MS (500 ppm). The ethanol and methanol extracts of bitter ginger and galangal's rhizomes (BRhE, BRhM, GRhE, and GRhM), stems (BStE, BStM, GRhE, and GRhM), and leaves (BLeE, BLeM, GLeE, and GLeM), respectively, showed antioxidant and antimicrobial activities. The extracts of all parts of bitter ginger and galangal were greatly antioxidative with 0.06-1.42 mg/mL for the IC50 values, while most of the extracts were strongly antimicrobial against C. acnes DMST 14916, particularly BRhM, BRhE, GRhM, and GRhE (MICs: 3.96-7.92 mg/mL). These rhizome extracts had also antimicrobial activities against S. aureus TISTR 746 (MICs: 7.92-31.68 mg/mL) and S. epidermidis TISTR 518 (MICs: 7.92-15.84 mg/mL). The extracts of bitter ginger and galangal rhizomes were not toxic to HaCaT and MRC-5 even at the highest concentrations. Through GC-MS and LC-MS/MS analysis, phytochemicals in bitter ginger rhizome extracts, including zerumbone, tectorigenin, piperic acid, demethoxycurcumin, and cirsimaritin, and galangal rhizome extracts, including sweroside and neobavaisoflavone, were expected to provide the antioxidant and anti-microbial activities. Therefore, the results suggest that the bitter ginger and galangal extracts could be natural anti-acne compounds with potential for pharmaceutic, cosmetic, and aesthetic applications.
Collapse
Affiliation(s)
- Tanat Na Nongkhai
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.N.N.); (S.S.); (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sarah E. Maddocks
- Microbiology and Infection Research Group, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Llandaff, Cardiff CF5 2YB, UK;
| | - Santi Phosri
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand;
| | - Sarita Sangthong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.N.N.); (S.S.); (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Punyawatt Pintathong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.N.N.); (S.S.); (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Phanuphong Chaiwut
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.N.N.); (S.S.); (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand;
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK;
| | - Tinnakorn Theansungnoen
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.N.N.); (S.S.); (P.P.); (P.C.)
| |
Collapse
|
3
|
Wang Z, Jiang Y, Li Z, Weng L, Xiao C. Herbal textual research of Belamcanda chinensis (L.) redouté and screening of quality-markers based on 'pharmacodynamics-substance'. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118324. [PMID: 38754643 DOI: 10.1016/j.jep.2024.118324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Belamcanda chinensis (L.) Redouté is widely distributed in East Asia, such as China, Russia and North Korea. Belamcandae Rhizoma is the sun-dried rhizome of B. chinensis and has a long history of traditional medicinal use. It was first recorded in the Shennong's Herbal Classic, and has the effects of clearing heat and detoxifying, eliminating phlegm and benefiting the pharynx. AIM OF THE STUDY To systematically study the source of Belamcandae Rhizoma, summarize the evolution of its medicinal properties, efficacy and the application history of its prescriptions, summarize its biological activity, phytochemistry, synthetic metabolic pathway and toxicology, and screen the Quality-Markers of Belamcandae Rhizoma according to the screening principle of traditional Chinese medicine Quality-Markers. MATERIALS AND METHODS All information available on Belamcandae Rhizoma was collected using electronic search engines, such as Pubmed, Web of Science, CNKI, WFO (www.worldfloraonline.org), MPNS (https://mpsn.kew.org), Changchun University of Traditional Chinese Medicine Library collections, Chinese Medical Classics. RESULTS The source of Belamcandae Rhizoma is B. chinensis of Iridaceae. It has a long history of application in China. It has the effects of clearing heat and detoxifying, eliminating phlegm and promoting pharynx. Modern pharmacological studies have shown that it has anti-inflammatory, anti-oxidation, anti-tumor and other physiological activities, and is safe and non-toxic at normal application doses. At present, tectoridin, iridin, tectorigenin, irigenin and irisflorentin are identified as the Quality-Markers of Belamcandae Rhizoma. CONCLUSIONS As a traditional Chinese medicine, Belamcandae Rhizoma has a long history of application, and multifaceted studies have demonstrated that Belamcandae Rhizoma is a promising Chinese medicine with good application prospects. By reviewing and identifying the Quality-Markers of Belamcandae Rhizoma, this study can help to establish the evaluation procedure of it on the one hand, and identify the shortcomings research on the other hand. Currently, there are few studies on the anabolism and toxicology of it, and future studies may focus on its in vivo processes, toxicology and adverse effects.
Collapse
Affiliation(s)
- Zijian Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Yuxin Jiang
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Zhaoyang Li
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Lili Weng
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Chunping Xiao
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| |
Collapse
|
4
|
Xiong H, Yang Y, Guo W, Yuan J, Yang W, Gao M. Study on quality difference between Belamcanda chinensis (L.) DC and Iris tectorum Maxim. based on chemical chromatogram analysis, biological activity evaluation and in vivo distribution rule. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117091. [PMID: 37634753 DOI: 10.1016/j.jep.2023.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Belamcanda chinensis (L.) DC. (BC) and Iris tectorum Maxim. (ITM) have been widely used in recent years due to their remarkable curative effects on sore throat, cough and asthma. but they are often misused due to their similar appearance. A comprehensive comparison of the chemical composition, biological activity, pharmacokinetics and tissue distribution between the two active differential components has not been performed. Differences in their specific effects have not been fully elucidated. AIM OF THE STUDY This work aims at differentiating between BC and ITM in terms of appearance, chemical composition, biological activity, pharmacokinetics and tissue distribution. MATERIALS AND METHODS In this study, the HPLC-FP method was used to find the differences between the chemical components of BC and ITM. The pharmacological experiments were used to compare the differences in activity, including in vitro anti-inflammatory activity with LPS-induced inflammation model of RAW 264.7 cells, inhibition of AChE activity, and the regulation of isolated small intestinal smooth muscle in mice. The pharmacokinetic and tissue distribution profiles were used to analyze the differences between the two in rats. RESULTS The types of isoflavones in BC and ITM are basically the same, but their contents in ITM is much higher than that in BC. At the same doses, the release of TNF-α, NO, IL-1β and IL-6 from RAW 264.7 cells in the ITM group was lower than that of the BC group, and the in vitro anti-inflammatory activity of ITM was stronger than that of BC. Meanwhile, ITM had stronger inhibition ability to inhibit AChE activity than BC. The BC extract exhibited an inhibitory effect on the isolated small intestinal smooth muscle of mice, and the ITM extract showed stimulatory effect at low concentration and inhibitory effect at high concentration. There were significant differences in drug-time profiles, kinetic parameters and tissue distribution. CONCLUSIONS There are significant differences in the multidimensional aspects of appearance, chemical composition, biological activity, pharmacokinetics, and tissue distribution between BC and ITM. This study provides a theoretical basis for the quality control, pharmacological efficacy and clinical application of the two herbs.
Collapse
Affiliation(s)
- Hao Xiong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yuanfeng Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wenhui Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wuliang Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Meng Gao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
5
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Allegrone G, Ceresa C, Rinaldi M, Fracchia L. Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm. Pharmaceutics 2021; 13:1172. [PMID: 34452132 PMCID: PMC8402037 DOI: 10.3390/pharmaceutics13081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.
Collapse
|
7
|
Liu S, Wang J, Zhang J, Wang T, Zhou Y, Lv Q, Hu N, Shen X, Deng X. Tectorigenin reduces type IV pilus-dependent cell adherence in Clostridium perfringens. FEMS Microbiol Lett 2020; 366:5498297. [PMID: 31125043 DOI: 10.1093/femsle/fnz112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals around the globe. The type IV pilus (TFP) system plays a key role in the colonization and invasion of host cells, biofilm formation and gliding motility, which is vital for C. perfringens infection. Therefore, targeting TFP function may be a promising strategy for the treatment of C. perfringens infection. Here, we investigated the potential inhibitory effects of tectorigenin (TE), an isoflavone extracted from the rhizome of the Chinese herb Belamcanda chinensis (L.) DC, on gliding motility, biofilm formation, adherence to cells and antibacterial activity of C. perfringens. Tectorigenin significantly inhibited gliding motility, biofilm formation and adherence to Caco-2 cells without observable antibacterial activity against C. perfringens. In addition, we also demonstrated that the inhibitory effect of TE on TFP function appears to be partially achieved by the suppression of TFP-associated genes. These findings demonstrate that TE may have the potential to be developed as a new anti-virulence drug for C. perfringens infection, particularly for the targeting of TFP.
Collapse
Affiliation(s)
- Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qianghua Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Naiyu Hu
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xue Shen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
8
|
McMurray R, Ball M, Tunney M, Corcionivoschi N, Situ C. Antibacterial Activity of Four Plant Extracts Extracted from Traditional Chinese Medicinal Plants against Listeria monocytogenes, Escherichia coli, and Salmonella enterica subsp. enterica serovar Enteritidis. Microorganisms 2020; 8:microorganisms8060962. [PMID: 32604894 PMCID: PMC7355567 DOI: 10.3390/microorganisms8060962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
The worldwide ethnobotanical use of four investigated plants indicates antibacterial properties. The aim of this study was to screen and determine significant antibacterial activity of four plant extracts in vitro and in a poultry digest model. Using broth microdilution, the concentrations at which four plant extracts inhibited Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli over 24 h was determined. Agrimonia pilosa Ledeb, Iris domestica (L.) Goldblatt and Mabb, Anemone chinensis Bunge, and Smilax glabra Roxb all exhibited a minimum inhibitory concentration (MIC) of 62.5 mg/L and a minimum bactericidal concentration (MBC) of 500 mg/L against one pathogen. A. pilosa Ledeb was the most effective against L. monocytogenes and E. coli with the exception of S. enteritidis, for which A. chinensis Bunge was the most effective. Time–kills of A. pilosa Ledeb and A. chinensis Bunge against L. monocytogenes, E. coli and S. enteritidis incubated in poultry cecum were used to determine bactericidal activity of these plant extracts. A. chinensis Bunge, significantly reduced S. enteritidis by ≥ 99.99% within 6 h. A. pilosa Ledeb exhibited effective significant bactericidal activity within 4 h against L. monocytogenes and E. coli. This paper highlights the potential of these plant extracts to control pathogens commonly found in the poultry gastrointestinal tract.
Collapse
Affiliation(s)
- R.L. McMurray
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, UK
- Correspondence:
| | - M.E.E. Ball
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, Northern Ireland, UK;
| | - M.M. Tunney
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK;
| | - N. Corcionivoschi
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Belfast BT4 3SD, Northern Ireland, UK;
| | - C. Situ
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
9
|
Liu EY, Zheng ZX, Zheng BZ, Xia Y, Guo MS, Dong TT, Tsim KWK. Tectorigenin, an isoflavone aglycone from the rhizome of
Belamcanda chinensis
, induces neuronal expression of erythropoietin via accumulation of hypoxia‐inducible factor‐1α. Phytother Res 2019; 34:1329-1337. [DOI: 10.1002/ptr.6599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Etta Y. Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food ScienceSouth China Agricultural University Guangzhou China
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Zoey X. Zheng
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Brody Z. Zheng
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Maggie S. Guo
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Tina T. Dong
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Karl W. K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
10
|
Zhou T, Li Z, Kang OH, Mun SH, Seo YS, Kong R, Shin DW, Liu XQ, Kwon DY. Antimicrobial activity and synergism of ursolic acid 3-O-α-L-arabinopyranoside with oxacillin against methicillin-resistant Staphylococcus aureus. Int J Mol Med 2017; 40:1285-1293. [PMID: 28848992 DOI: 10.3892/ijmm.2017.3099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the antibacterial activity of a single constituent, ursolic acid 3-O-α-L-arabinopyranoside (URS), isolated from the leaves of Acanthopanax henryi (Oliv.) Harms, alone and in combination with oxacillin (OXA) against methicillin-resistant Staphylococcus aureus (MRSA). A broth microdilution assay was used to determine the minimal inhibitory concentration (MIC). The synergistic effects of URS and OXA were determined using a checkerboard dilution test and time-kill curve assay. The mechanism of action of URS against MRSA was analyzed using a viability assay in the presence of a detergent and an ATPase inhibitor. Morphological changes in the URS-treated MRSA strains were evaluated via transmission electron microscopy (TEM). In addition, the producing penicillin-binding protein 2a (PBP2a) protein level was analyzed using western blotting. The MIC value of URS against MRSA was found to be 6.25 µg/ml and there was a partial synergistic effect between OXA and URS. The time-kill growth curves were suppressed by OXA combined with URS at a sub-inhibitory level. Compared to the optical density at 600 nm (OD600) value of URS alone (0.09 µg/ml), the OD600 values of the suspension in the presence of 0.09 µg/ml URS and 0.00001% Triton X-100 or 250 µg/ml N,N'-dicyclohexylcarbodiimide reduced by 56.6 and 85.9%, respectively. The TEM images of MRSA indicated damage to the cell wall, broken cell membranes and cell lysis following treatment with URS and OXA. Finally, an inhibitory effect on the expression of PBP2a protein was observed when cells were treated with URS and OXA compared with untreated controls. The present study suggested that URS was significantly active against MRSA infections and revealed the potential of URS as an effective natural antibiotic.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Zhi Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410-208, P.R. China
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Su-Hyun Mun
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, College of Bio Industry Science, Sunchon National University, Sunchon, Jeonnam 540-742, Republic of Korea
| | - Xiang-Qian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410-208, P.R. China
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
11
|
Wang CL, Li D, Wang CD, Xiao F, Zhu JF, Shen C, Zuo B, Cui YM, Wang H, Gao Y, Hu GL, Zhang XL, Chen XD. Anti-inflammatory and anti-osteoarthritis effects of tectorigenin. Biol Open 2017. [PMID: 28642243 PMCID: PMC5576074 DOI: 10.1242/bio.024562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common and dynamic disease of the joints, including the articular cartilage, underlying bones and synovium. In particular, OA is considered as the degeneration of the cartilage. Tectorigenin (Tec) is known to affect many biological processes; however, its effects on articular chondrocytes remain unclear. This study aimed to assess the effects of Tec on articular cartilage. In vitro, Tec inhibited the expression levels of type X collagen, cyclooxigenase-2, matrix metalloproteinase (MMP)-3 and MMP-13, but enhanced the expression of Runx1, type II collagen and aggrecan in the presence of IL-1β. Meanwhile, Tec inhibited apoptosis through the Bax/Bcl-2/caspase-3 pathway, upregulating p-Bad, downregulating the Bax/Bcl-2 ratio, and activating caspase-3 compared with IL-1β treatment only. Moreover, this process was partially regulated by NF-κB P65. In vivo, the chondroprotective effects of Tec were assessed by establishing a model of surgically induced OA. Tec-treated joints exhibited fewer osteoarthritic changes than saline-treated joints. Meanwhile, 1.5 μg/kg Tec treatment produced a greater protective effect than 0.75 μg/kg Tec. The Osteoarthritis Research Society International (OARSI) scoring system, employed to assess histopathological grading of the models, as well immunohistochemistry for Aggrecan Neoepitope and MMP-3, further confirmed the results. In conclusion, this study showed that Tec plays a chondroprotective role in the OA process by preventing articular cartilage degeneration and chondrocyte apoptosis via the NF-κB P65 pathway. Summary: Tectorigenin exerts anti-inflammatory and anti-osteoarthritis effects by inhibiting apoptosis in chondrocytes via the NF-κB P65 pathway.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Chuan-Dong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Yi-Min Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| |
Collapse
|
12
|
Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep 2017. [PMID: 28630440 PMCID: PMC5476642 DOI: 10.1038/s41598-017-03716-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spread of multidrug-resistant Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA), has shortened the useful life of anti-staphylococcal drugs enormously. Two approaches can be followed to address this problem: screening various sources for new leads for antibiotics or finding ways to disable the resistance mechanisms to existing antibiotics. Plants are resistant to most microorganisms, but despite extensive efforts to identify metabolites that are responsible for this resistance, no substantial progress has been made. Plants possibly use multiple strategies to deal with microorganisms that evolved over time. For this reason, we searched for plants that could potentiate the effects of known antibiotics. From 29 plant species tested, Cytisus striatus clearly showed such an activity and an NMR-based metabolomics study allowed the identification of compounds from the plant extracts that could act as antibiotic adjuvants. Isoflavonoids were found to potentiate the effect of ciprofloxacin and erythromycin against MRSA strains. For the structure-activity relationship (SAR), 22 isoflavonoids were assessed as antibiotic adjuvants. This study reveals a clear synergy between isoflavonoids and the tested antibiotics, showing their great potential for applications in the clinical therapy of infections with antibiotic-resistant microorganisms such as MRSA.
Collapse
|
13
|
Guo Y, Chen YH, Cheng ZH, Ou-Yang HN, Luo C, Guo ZL. Tectorigenin inhibits osteosarcoma cell migration through downregulation of matrix metalloproteinases in vitro. Anticancer Drugs 2016; 27:540-6. [PMID: 26991068 PMCID: PMC4881729 DOI: 10.1097/cad.0000000000000362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/22/2016] [Indexed: 01/30/2023]
Abstract
Tectorigenin (Tec) is an effective component of the traditional Chinese medicine Belamcanda chinensis, which has been reported to exert beneficial effects in various types of cancer. However, the activity and mechanism of Tec in osteosarcoma (OS) have not been investigated to date. The aim of the present study was to examine the inhibitory effect of Tec on OS and its underlying mechanism of action. OS cells (Saos2 and U2OS) were treated with various concentrations of Tec for 24, 48, and 72 h. Cell proliferation was evaluated using an CCK-8 assay. Cell migration and invasion ability were measured using the Transwell assay. The expressions of MMP1, MMP2, MMP9, and cleaved caspase3 were measured using real-time PCR and/or western blot analysis. We found that Tec inhibited the proliferation of OS cells (Saos2 and U2OS) in a dose-dependent and time-dependent manner. In addition, Tec significantly inhibited migration and invasion in OS cells (P<0.05). Tec upregulated the expression of cleaved caspase3, while downregulating the expression of MMP1, MMP2, and MMP9. Taken together, the present study provided fundamental evidence for the application of Tec in chemotherapy against OS.
Collapse
Affiliation(s)
- Yu Guo
- Departments of aNeurosurgery bPlastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Belamcandae chinensis rhizoma – a review of phytochemistry and bioactivity. Fitoterapia 2015; 107:1-14. [DOI: 10.1016/j.fitote.2015.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 01/12/2023]
|
15
|
The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:520578. [PMID: 26265924 PMCID: PMC4523682 DOI: 10.1155/2015/520578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/02/2015] [Indexed: 11/29/2022]
Abstract
Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N′-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds.
Collapse
|