1
|
Hoffmann J, Chedid C, Ocheretina O, Masetti C, Joseph P, Mabou MM, Mathon JE, Francois EM, Gebelin J, Babin FX, Raskine L, Pape JW. Drug-resistant TB prevalence study in 5 health institutions in Haiti. PLoS One 2021; 16:e0248707. [PMID: 33735224 PMCID: PMC7971505 DOI: 10.1371/journal.pone.0248707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
Objectives Tuberculosis (TB) is the leading infectious cause of death in the world. Multi-drug resistant TB (MDR-TB) is a major public health problem as treatment is long, costly, and associated to poor outcomes. Here, we report epidemiological data on the prevalence of drug-resistant TB in Haiti. Methods This cross-sectional prevalence study was conducted in five health centers across Haiti. Adult, microbiologically confirmed pulmonary TB patients were included. Molecular genotyping (rpoB gene sequencing and spoligotyping) and phenotypic drug susceptibility testing were used to characterize rifampin-resistant MTB isolates detected by Xpert MTB/RIF. Results Between April 2016 and February 2018, 2,777 patients were diagnosed with pulmonary TB by Xpert MTB/RIF screening and positive MTB cultures. A total of 74 (2.7%) patients were infected by a drug-resistant (DR-TB) M. tuberculosis strain. Overall HIV prevalence was 14.1%. Patients with HIV infection were at a significantly higher risk for infection with DR-TB strains compared to pan-susceptible strains (28.4% vs. 13.7%, adjusted odds ratio 2.6, 95% confidence interval 1.5–4.4, P = 0.001). Among the detected DR-TB strains, T1 (29.3%), LAM9 (13.3%), and H3 (10.7%) were the most frequent clades. In comparison with previous spoligotypes studies with data collected in 2000–2002 and in 2008–2009 on both sensitive and resistant strains of TB in Haiti, we observed a significant increase in the prevalence of the drug-resistant MTB Spoligo-International-Types (SIT) 137 (X2 clade: 8.1% vs. 0.3% in 2000–02 and 0.9% in 2008–09, p<0.001), 5 (T1 clade: 6.8% vs 1.9 in 2000–02 and 1.7% in 2008–09, P = 0.034) and 455 (T1 clade: 5.4% vs 1.6% and 1.1%, P = 0.029). Newly detected spoligotypes (SIT 6, 7, 373, 909 and 1624) were also recorded. Conclusion This study describes the genotypic and phenotypic characteristics of DR-TB strains circulating in Haiti from April 2016 to February 2018. Newly detected MTB clades harboring multi-drug resistance patterns among the Haitian population as well as the higher risk of MDR-TB infection in HIV-positive people highlights the epidemiological relevance of these surveillance data. The importance of detecting RIF-resistant patients, as proxy for MDR-TB in peripheral sites via molecular techniques, is particularly important to provide adequate patient case management, prevent the transmission of resistant strains in the community and to contribute to the surveillance of resistant strains.
Collapse
Affiliation(s)
- Jonathan Hoffmann
- Fondation Mérieux, Direction Médicale et Scientifique, Lyon, France
- * E-mail:
| | - Carole Chedid
- Fondation Mérieux, Direction Médicale et Scientifique, Lyon, France
- Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Oksana Ocheretina
- Division of Infectious Diseases, Department of Medicine, Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Les Centres GHESKIO, Port-au-Prince, Haiti
| | - Chloé Masetti
- Fondation Mérieux, Direction des Opérations Internationales, Lyon, France
| | | | | | | | | | - Juliane Gebelin
- Fondation Mérieux, Direction des Opérations Internationales, Lyon, France
| | | | - Laurent Raskine
- Fondation Mérieux, Direction des Opérations Internationales, Lyon, France
| | | |
Collapse
|
2
|
Netikul T, Palittapongarnpim P, Thawornwattana Y, Plitphonganphim S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. INFECTION GENETICS AND EVOLUTION 2021; 91:104802. [PMID: 33684570 DOI: 10.1016/j.meegid.2021.104802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is still problematic as it affects large numbers of people globally. Mycobacterium tuberculosis Lineage 1 (L1) or Indo Oceanic Lineage, one of widespread major lineages, has a specific geographic distribution and high mortality. It is highly diverse and endemic in several high burden countries. However, studies on the global burden of L1 and its sublineages remain limited. This may lead to the underestimation of the importance of its variance in developing and applying tuberculosis control measures. This study aimed to estimate the number of patients infected with M. tuberculosis L1 and its sublineages worldwide. The proportion of L1 among tuberculosis patients was searched in published reports from countries around the world and the number of patients was calculated based on a WHO report on country incidences and populations. The numbers of patients infected with the five major sublineages, namely L1.1.1, L1.1.2, L1.1.3, L1.2.1, and L1.2.2 were estimated where information was available. It was found that L1 accounted for 28% of global tuberculosis cases in 2012 and 2018. Over 80% of the L1 global burden was in India, the Philippines, Indonesia and Bangladesh, which are also among the countries with highest absolute numbers of tuberculosis patients in the world. Globally, the estimated number of patients infected with M. tuberculosis L1.2.1 and L1.1.2 was over 1.1 million and of patients infected with L1.1.1 was about 200,000. This study demonstrated that L1 contributes significantly to the global burden of tuberculosis. To achieve the End TB Strategy, more attention needs to be paid to the responses of M. tuberculosis L1 to various control measures.
Collapse
Affiliation(s)
- Thidarat Netikul
- Faculty of Medicine, Siam University, Phet Kasem Road, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand; National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand
| | - Supada Plitphonganphim
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 road, Bangkok, Thailand.
| |
Collapse
|
3
|
Acosta F, Norman A, Sambrano D, Batista V, Mokrousov I, Shitikov E, Jurado J, Mayrena M, Luque O, Garay M, Solís L, Muñoz P, Folkvardsen DB, Lillebaek T, Pérez-Lago L, Goodridge A, García de Viedma D. Probable long-term prevalence for a predominant Mycobacterium tuberculosis clone of a Beijing genotype in Colon, Panama. Transbound Emerg Dis 2020; 68:2229-2238. [PMID: 33048439 DOI: 10.1111/tbed.13875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022]
Abstract
Beijing genotype Mycobacterium tuberculosis strains associate with increased virulence, resistance and/or higher transmission rates. This study describes a specific Beijing strain predominantly identified in the Panamanian province of Colon with one of the highest incidences of tuberculosis in the country. Retrospective mycobacterial interspersed repetitive unit/variable number of tandem repeats analysis of 42 isolates collected between January and August 2018 allowed to identify a cluster (Beijing A) with 17 (40.5%) Beijing isolates. Subsequent prospective strain-specific PCR-based surveillance from September 2019 to March 2020 confirmed the predominance of the Beijing A strain (44.1%) in this province. Whole-genome sequencing revealed higher-than-expected diversity within the cluster, suggesting long-term prevalence of this strain and low number of cases caused by recent transmission. The Beijing A strain belongs to the Asian African 3 (Bmyc13, L2.2.5) branch of the modern Beijing sublineage, with their closest isolates corresponding to cases from Vietnam, probably introduced in Panama between 2000 and 2012.
Collapse
Affiliation(s)
- Fermin Acosta
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Dilcia Sambrano
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Victoria Batista
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | | | - Odemaris Luque
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panama
| | - Maybis Garay
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Laura Solís
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panama
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Dorte B Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.,Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laura Pérez-Lago
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amador Goodridge
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Spain
| |
Collapse
|
4
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Couvin D, Reynaud Y, Rastogi N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One 2019; 14:e0219706. [PMID: 31299060 PMCID: PMC6625721 DOI: 10.1371/journal.pone.0219706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The East African Indian (EAI) and Central Asian (CAS) lineages of Mycobacterium tuberculosis complex (MTBC) mainly infect tuberculosis (TB) patients in the eastern hemisphere which contains many of the 22 high TB burden countries including China and India. We investigated if phylogeographical, epidemiological and demographical characteristics for these 2 lineages differed in SITVIT2 database. Genotyping results and associated data (age, sex, HIV serology, drug resistance) on EAI and CAS lineages (n = 10,974 strains) were extracted. Phylogenetic and Bayesian, and other statistical analyses were used to compare isolates. The male/female sex ratio was 907/433 (2.09) for the EAI group vs. 881/544 (1.62) for CAS (p-value<0.002). The proportion of younger patients aged 0-20 yrs. with CAS lineage was significantly higher than for EAI lineage (18.07% vs. 10.85%, p-value<0.0001). The proportion of multidrug resistant and extensively drug resistant TB among CAS group (30.63% and 1.03%, respectively) was significantly higher than in the EAI group (12.14% and 0.29%, respectively; p-value<0.0001). Lastly, the proportion of HIV+ patients was 20.34% among the EAI group vs. 3.46% in the CAS group (p-value<0.0001). This remarkable split observed between various parameters for these 2 lineages was further corroborated by their geographic distribution profile (EAI being predominantly found in Eastern-Coast of Africa, South-India and Southeast Asia, while CAS was predominantly found in Afghanistan, Pakistan, North India, Nepal, Middle-east, Libya, Sudan, Ethiopia, Kenya and Tanzania). Some geo-specificities were highlighted. This study demonstrated a remarkable cleavage for aforementioned characteristics of EAI and CAS lineages, showing a North-South divide along the tropic of cancer in Eastern hemisphere-mainly in Asia, and partly prolonged along the horn of Africa. Such studies would be helpful to better comprehend prevailing TB epidemic in context of its historical spread and evolutionary features, and provide clues to better treatment and patient-care in countries and regions concerned by these lineages.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| |
Collapse
|
6
|
Reynaud Y, Millet J, Rastogi N. Genetic Structuration, Demography and Evolutionary History of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as Two Distinct Subpopulations Revealed by Bayesian Analyses. PLoS One 2015; 10:e0140911. [PMID: 26517715 PMCID: PMC4627653 DOI: 10.1371/journal.pone.0140911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for its control and elimination. Starting from a large dataset comprising spoligotyping (n = 21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 countries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged to the Euro-American lineage 4, among which the most predominant genotypic family belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of strains). By combining classical phylogenetic analyses and Bayesian approaches, this study revealed for the first time a clear genetic structuration of LAM9 sublineage into two subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics. LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was characterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2 sublineage appeared to expand close to twenty times more than LAM9C1 and showed older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates presented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Further studies based on Whole Genome Sequencing of LAM strains will provide the needed resolution to decipher the biogeographical structure and evolutionary history of this successful family.
Collapse
Affiliation(s)
- Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| | - Julie Millet
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| |
Collapse
|
7
|
Dantas NGT, Suffys PN, Carvalho WDS, Gomes HM, de Almeida IN, de Assis LJ, Augusto CJ, Gomgnimbou MK, Refregier G, Sola C, de Miranda SS. Genetic diversity and molecular epidemiology of multidrug-resistant Mycobacterium tuberculosis in Minas Gerais State, Brazil. BMC Infect Dis 2015; 15:306. [PMID: 26231661 PMCID: PMC4521345 DOI: 10.1186/s12879-015-1057-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/23/2015] [Indexed: 11/22/2022] Open
Abstract
Background We aimed to characterize the genetic diversity of drug-resistant Mycobacterium tuberculosis (MTb) clinical isolates and investigate the molecular epidemiology of multidrug-resistant (MDR) tuberculosis from Minas Gerais State, Brazil. Methods One hundred and four MTb clinical isolates were assessed by IS6110-RFLP, 24-locus mycobacterial interspersed repetitive units variable-number tandem repeats (MIRU-VNTR), TB-SPRINT (simultaneous spoligotyping and rifampicin-isoniazid drug-resistance mutation analysis) and 3R-SNP-typing (analysis of single-nucleotide polymorphisms in the genes involved in replication, recombination and repair functions). Results Fifty-seven different IS6110-RFLP patterns were found, among which 50 had unique patterns and 17 were grouped into seven clusters. The discriminatory index (Hunter and Gaston, HGDI) for RFLP was 0.9937. Ninety-nine different MIRU-VNTR patterns were found, 95 of which had unique patterns and nine isolates were grouped into four clusters. The major allelic diversity index in the MIRU-VNTR loci ranged from 0.6568 to 0.7789. The global HGDI for MIRU-VNTR was 0.9991. Thirty-two different spoligotyping profiles were found: 16 unique patterns (n = 16) and 16 clustered profiles (n = 88). The HGDI for spoligotyping was 0.9009. The spoligotyped clinical isolates were phylogenetically classified into Latin-American Mediterranean (66.34 %), T (14.42 %), Haarlem (5.76 %), X (1.92 %), S (1.92 %) and U (unknown profile; 8.65 %). Among the U isolates, 77.8 % were classified further by 3R-SNP-typing as 44.5 % Haarlem and 33.3 % LAM, while the 22.2 % remaining were not classified. Among the 104 clinical isolates, 86 were identified by TB-SPRINT as MDR, 12 were resistant to rifampicin only, one was resistant to isoniazid only, three were susceptible to both drugs, and two were not successfully amplified by PCR. A total of 42, 28 and eight isolates had mutations in rpoB positions 531, 526 and 516, respectively. Correlating the cluster analysis with the patient data did not suggest recent transmission of MDR-TB. Conclusions Although our results do not suggest strong transmission of MDR-TB in Minas Gerais (using a classical 100 % MDR-TB identical isolates cluster definition), use of a smoother cluster definition (>85 % similarity) does not allow us to fully eliminate this possibility; hence, around 20–30 % of the isolates we analyzed might be MDR-TB transmission cases.
Collapse
Affiliation(s)
- Nayanne Gama Teixeira Dantas
- Post-Graduate Program in Infectious Diseases and Tropical Medicine, Department of Internal medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Phillip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Wânia da Silva Carvalho
- Laboratory of Molecular Biology and Public Health, Department of Social Pharmacy, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Harrison Magdinier Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Isabela Neves de Almeida
- Post-Graduate Program in Infectious Diseases and Tropical Medicine, Department of Internal medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Lida Jouca de Assis
- Laboratory of Molecular Biology and Public Health, Department of Social Pharmacy, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Michel Kireopori Gomgnimbou
- Institut for Integrative Cell Biology, I2BC, UMR9198 CEA-CNRS-UPSaclay, Orsay, France. .,Centre Muraz, Bobo-Dioulasso, Burkina Faso.
| | - Guislaine Refregier
- Institut for Integrative Cell Biology, I2BC, UMR9198 CEA-CNRS-UPSaclay, Orsay, France.
| | - Christophe Sola
- Institut for Integrative Cell Biology, I2BC, UMR9198 CEA-CNRS-UPSaclay, Orsay, France.
| | - Silvana Spíndola de Miranda
- Post-Graduate Program in Infectious Diseases and Tropical Medicine, Department of Internal medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Yuen CM, Rodriguez CA, Keshavjee S, Becerra MC. Map the gap: missing children with drug-resistant tuberculosis. Public Health Action 2015; 5:45-58. [PMID: 26400601 PMCID: PMC4525371 DOI: 10.5588/pha.14.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/08/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The lack of published information about children with multidrug-resistant tuberculosis (MDR-TB) is an obstacle to efforts to advocate for better diagnostics and treatment. OBJECTIVE To describe the lack of recognition in the published literature of MDR-TB and extensively drug-resistant TB (XDR-TB) in children. DESIGN We conducted a systematic search of the literature published in countries that reported any MDR- or XDR-TB case by 2012 to identify MDR- or XDR-TB cases in adults and in children. RESULTS Of 184 countries and territories that reported any case of MDR-TB during 2005-2012, we identified adult MDR-TB cases in the published literature in 143 (78%) countries and pediatric MDR-TB cases in 78 (42%) countries. Of the 92 countries that reported any case of XDR-TB, we identified adult XDR-TB cases in the published literature in 55 (60%) countries and pediatric XDR-TB cases for 9 (10%) countries. CONCLUSION The absence of publications documenting child MDR- and XDR-TB cases in settings where MDR- and XDR-TB in adults have been reported indicates both exclusion of childhood disease from the public discourse on drug-resistant TB and likely underdetection of sick children. Our results highlight a large-scale lack of awareness about children with MDR- and XDR-TB.
Collapse
Affiliation(s)
- C. M. Yuen
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - S. Keshavjee
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Partners In Health, Boston, Massachusetts, USA
| | - M. C. Becerra
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Partners In Health, Boston, Massachusetts, USA
| |
Collapse
|