1
|
Shah BA, Ganai SA, Koul AM, Mohan S, Amin A, Wani Z, Majeed U, Rajamanikandan S, Farooq F, Malik FA, Shah NN, Qadri RA. Exploring novel and potent molecules for disrupting DEPTOR-mTOR interaction through structure-steered screening, extra-exactitude molecular docking, prime binding free energy estimation and voguish molecular dynamics. J Biomol Struct Dyn 2022; 40:12037-12047. [PMID: 34431457 DOI: 10.1080/07391102.2021.1967785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dep domain containing mTOR interacting protein (DEPTOR) has critical implications in the development and progression of human malignancies. Increased expression of DEPTOR promotes the growth of tumor cells by inhibiting the mTORC1, which alleviates the negative feedback inhibition by mTORC1 downstream target S6Ks on PI3K/AKT pathway thereby promotes cell survival and prevents apoptosis. This clearly suggests that targetting DEPTOR-mTOR interactions through small molecules may prove as an effective strategy for circumventing distinct cancers. In this study, we employed a top-down approach for finding three novel molecules which may prove effective in disrupting Deptor-mTOR interaction. Following DEPTOR modelling and validation we performed grid-directed structure-based screening by specifying the residues of DEPTOR known to interact with mTOR. A library of 10,000 protein-protein disrupting molecules was screened against the defined region of DEPTOR. From the screened molecules, 30 molecules with highest binding affinity were chosen for molecular docking. Thirty (30) extra-precision molecular docking experiments and 30 molecular mechanics generalized born surface area (MMGBSA) assays were performed. Following this top 10 molecules in terms of binding affinity were selected and the interaction profile of their corresponding docked files was generated. The top three molecules were finally selected after taking all the three parameters including docking score, binding energy value and interaction profile into consideration. For atomistic insights regarding DEPTOR-topmost hit interactions, molecular dynamics was performed for 100 ns. This molecule after further evaluation may prove as promising candidate for anticancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Shabir Ahmad Ganai
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Aabid M Koul
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Suma Mohan
- SCBT, Shanmuga Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Zubair Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Umer Majeed
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | | | - Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | | | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
2
|
Characterization of SARS-CoV-2 Isolate (MZ558159) Reported from India for in Silico Drug Designing. JOURNAL OF RESEARCH IN APPLIED AND BASIC MEDICAL SCIENCES 2022. [DOI: 10.52547/rabms.8.4.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Naveed M, Hassan JU, Ahmad M, Naeem N, Mughal MS, Rabaan AA, Aljeldah M, Shammari BRA, Alissa M, Sabour AA, Alaeq RA, Alshiekheid MA, Turkistani SA, Elmi AH, Ahmed N. Designing mRNA- and Peptide-Based Vaccine Construct against Emerging Multidrug-Resistant Citrobacter freundii: A Computational-Based Subtractive Proteomics Approach. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1356. [PMID: 36295517 PMCID: PMC9610710 DOI: 10.3390/medicina58101356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Jawad-ul Hassan
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muneeb Ahmad
- Department of Medical Education, Rawalpindi Medical University, Rawalpindi 46000, Pakistan
| | - Nida Naeem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 42353, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Safaa A. Turkistani
- Department of Medical Laboratory, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Abdirahman Hussein Elmi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Naveed Ahmed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
4
|
In-Silico Design of a Multi‑epitope Construct Against Influenza A Based on Nucleoprotein Gene. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Biochemical Characterization and Functional Analysis of Heat Stable High Potential Protease of Bacillus amyloliquefaciens Strain HM48 from Soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 2021; 11:biom11010117. [PMID: 33477596 PMCID: PMC7831320 DOI: 10.3390/biom11010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
A novel temperature stable alkaline protease yielding bacteria was isolated from the soils of Dachigam National Park, which is known to be inhabited by a wide variety of endemic plant and animal species of Western Himalaya. This high-potential protease producing isolate was characterized and identified as Bacillus amyloliquefaciens strain HM48 by morphological, Gram’s staining and biochemical techniques followed by molecular characterization using 16S rRNA approach. The extracellular protease of B. amyloliquefaciens HM48 was purified by precipitating with ammonium sulfate (80%), followed by dialysis and Gel filtration chromatography increasing its purity by 5.8-fold. The SDS–PAGE analysis of the purified enzyme confirmed a molecular weight of about ≈25 kDa. The enzyme displayed exceptional activity in a broad temperature range (10–90 °C) at pH 8.0, retaining its maximum at 70 °C, being the highest reported for this proteolytic Bacillus sp., with KM and Vmax of 11.71 mg/mL and 357.14 µmol/mL/min, respectively. The enzyme exhibited remarkable activity and stability against various metal ions, surfactants, oxidizing agent (H2O2), organic solvents and displayed outstanding compatibility with widely used detergents. This protease showed effective wash performance by exemplifying complete blood and egg-yolk stains removal at 70 °C and efficiently disintegrated chicken feathers making it of vital importance for laundry purpose and waste management. For functional analysis, protease gene amplification of strain HM48 yielded a nucleotide sequence of about 700 bp, which, when checked against the available sequences in NCBI, displayed similarity with subtilisin-like serine protease of B. amyloliquefaciens. The structure of this protease and its highest-priority substrate β-casein was generated through protein modeling. These protein models were validated through futuristic algorithms following which protein–protein (protease from HM48 and β-casein) docking was performed. The interaction profile of these proteins in the docked state with each other was also generated, shedding light on their finer details. Such attributes make this thermally stable protease novel and suitable for high-temperature industrial and environmental applications.
Collapse
|
6
|
Delineating Novel Therapeutic Drug and Vaccine Targets for Staphylococcus cornubiensis NW1T Through Computational Analysis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10076-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Bhattacharya M, Sharma AR, Sharma G, Patra P, Mondal N, Patra BC, Lee SS, Chakraborty C. Computer aided novel antigenic epitopes selection from the outer membrane protein sequences of Aeromonas hydrophila and its analyses. INFECTION GENETICS AND EVOLUTION 2020; 82:104320. [PMID: 32298854 DOI: 10.1016/j.meegid.2020.104320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Gram-negative bacteria are among the causative microorganisms for zoonotic diseases in humans and teleosts. Outer membrane proteins (Omps) of Aeromonas hydrophila, a gram-negative bacterium, are critical for the subcellular integration to eukaryotic cell that can modulate the functions of macrophages. Hence Omps are recognized as immune markers for the vaccine development. METHODS In the present study, a 3-D model of Omps was identified using in silico technique and recognized through the Swiss model web-server and confirmed with Procheck and ProSA server.. The B-cell binding sites of the protein were selected from sequence alignment.. Further, the identification of B-cell epitope was carried out using modules of BCpred server (i.e., BCPred and Amino Acid Pairs). The identified antigenic amino acid sequences for B-cells were used to determine the T-cell epitope (both MHC I & II allelic binding sequences) using ProPred 1 and ProPred servers. RESULTS The epitopic regions (9 mer: LAGKTTNES and GFDGSQYGK) in the Omps that are bound together with the MHC molecules (MHC-I & II), and have maximum possible numbers of MHC alleles are recognized. It was observed that Omps of A. hydrophila are conserved across the serotypes and are immunogenic. These epitopes can stimulate significant immune responses and can be advantageous while preparing peptide-based vaccines against A. hydrophila infections. Thus, suggesting the use of Omps in the development of vaccines and immunotherapeutics against the bacterial diseases in humans and teleosts.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea
| | - Prasanta Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Niladri Mondal
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India.
| |
Collapse
|
8
|
Muthupandi K, Marwal A, Tennyson J. Genome of a known but distinct begomovirus associated with a novel satellite molecule infecting a new host bitter gourd ( Momordica charantia). 3 Biotech 2019; 9:247. [PMID: 31168440 DOI: 10.1007/s13205-019-1775-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/22/2019] [Indexed: 10/26/2022] Open
Abstract
Coccinia mosaic Virdhunagar virus (KY860899), Tomato leaf curl New Delhi virus (KY860898) and Tomato leaf curl Virdhunagar alphasatellite (KY848691) were found to be associated with leaf curl disease in Momordica charantia (bitter gourd). The complete nucleotide sequence of Coccinia mosaic Virdhunagar virus showed 82% identity with Coccinia mosaic Tamil Nadu virus (KM244719), whereas Tomato leaf curl New Delhi virus was 96% identical to Tomato leaf curl New Delhi virus (KP868764) and Tomato leaf curl Virdhunagar alphasatellite illustrated 81% similarity with Tomato leaf curl New Delhi alphasatellite (JQ041697). Phylogenetic and RDP analysis revealed the proximity of these begomoviruses with other monopartite begomoviruses and alphasatellites already reported from India. As per the threshold criteria laid down by International Committee on Taxonomy of Viruses for species demarcation in begomoviruses and satellite molecules, the identified virus isolates, Coccinia mosaic Virdhunagar virus and Tomato leaf curl Virdhunagar alphasatellite are proposed as new species. To the best of our knowledge, this is the first ever account of mixed infection of begomoviruses in Momordica charantia, a vegetable crop commonly cultivated throughout India.
Collapse
Affiliation(s)
- Karthikeyan Muthupandi
- 1Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Avinash Marwal
- 2Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Jebasingh Tennyson
- 1Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| |
Collapse
|
9
|
Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How much promising? Comput Biol Chem 2018; 76:210-217. [PMID: 30067954 DOI: 10.1016/j.compbiolchem.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/21/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
|
10
|
|