1
|
Qi J, Yu J, Tan Y, Chen R, Xu W, Chen Y, Lu J, Liu Q, Wu J, Gu W, Zhang M. Mechanisms of Chinese Medicine Xinmailong's protection against heart failure in pressure-overloaded mice and cultured cardiomyocytes. Sci Rep 2017; 7:42843. [PMID: 28205629 PMCID: PMC5311956 DOI: 10.1038/srep42843] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Patients with heart failure (HF) have high mortality and mobility. Xinmailong (XML) injection, a Chinese Medicine, is clinically effective in treating HF. However, the mechanism of XML's effectiveness on HF was unclear, and thus, was the target of the present study. We created a mouse model of pressure-overload-induced HF with transverse aortic constriction (TAC) surgery and compared among 4 study groups: SHAM (n = 10), TAC (n = 12), MET (metoprolol, positive drug treatment, n = 7) and XML (XML treatment, n = 14). Dynamic changes in cardiac structure and function were evaluated with echocardiography in vivo. In addition, H9C2 rat cardiomyocytes were cultured in vitro and the phosphorylation of ERK1/2, AKT, GSK3β and protein expression of GATA4 in nucleus were detected with Western blot experiment. The results showed that XML reduced diastolic thickness of left ventricular posterior wall, increased ejection fraction and fraction shortening, so as to inhibit HF at 2 weeks after TAC. Moreover, XML inhibited the phosphorylation of ERK1/2, AKT and GSK3β, subsequently inhibiting protein expression of GATA4 in nucleus (P < 0.001). Together, our data demonstrated that XML inhibited the TAC-induced HF via inactivating the ERK1/2, AKT/GSK3β, and GATA4 signaling pathway.
Collapse
Affiliation(s)
- Jianyong Qi
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juan Yu
- Animal Laboratory, Southern Medical University, Guangzhou, 510515, China.,Animal Laboratory, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yafang Tan
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Renshan Chen
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wen Xu
- Lab of Chinese Materia Medica Preparation, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanfen Chen
- Puning Hospital of Chinese Medicine, Puning, Guangdong Province, 515300, China
| | - Jun Lu
- Puning Hospital of Chinese Medicine, Puning, Guangdong Province, 515300, China
| | - Qin Liu
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Weiwang Gu
- Animal Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Minzhou Zhang
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Yu J, Chen R, Tan Y, Wu J, Qi J, Zhang M, Gu W. Salvianolic Acid B Alleviates Heart Failure by Inactivating ERK1/2/GATA4 Signaling Pathway after Pressure Overload in Mice. PLoS One 2016; 11:e0166560. [PMID: 27893819 PMCID: PMC5125602 DOI: 10.1371/journal.pone.0166560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Heart failure(HF) is a dangerous disease that affects millions of patients. Radix Salvia is widely used in Chinese clinics to treat heart diseases. Salvianolic acid B(SalB) is the major active component of Radix Salvia. This study investigated the mechanisms of action and effects of SalB on HF in an experimental mouse model of HF. METHODS We created a mouse model of HF by inducing pressure overload with transverse aortic constriction(TAC) surgery for 2 weeks and compared among 4 study groups: SHAM group (n = 10), TAC group (n = 9), TAC+MET group (metprolol, positive drug treatment, n = 9) and TAC+SalB group (SalB, 240 mg•kg-1•day-1, n = 9). Echocardiography was used to evaluate the dynamic changes in cardiac structure and function in vivo. Plasma brain natriuretic peptide (BNP) concentration was detected by Elisa method. In addition, H9C2 rat cardiomyocytes were cultured and Western blot were implemented to evaluate the phosphorylation of ERK1/2, AKT, and protein expression of GATA4. RESULTS SalB significantly inhibited the phosphorylation of Thr202/Tyr204 sites of ERK1/2, but not Ser473 site of AKT, subsequently inhibited protein expression of GATA4 and plasma BNP(P < 0.001), and then inhibited HF at 2 weeks after TAC surgery. CONCLUSIONS Our data provide a mechanism of inactivating the ERK1/2/GATA4 signaling pathway for SalB inhibition of the TAC-induced HF.
Collapse
Affiliation(s)
- Juan Yu
- Laboratory Animal Center, Southern Medical University, Guangzhou city, Guangdong province, China
- Animal Laboratory, Guangdong Province Academy of Chinese Medicine, Guangzhou city, Guangdong province, China
| | - Renshan Chen
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
| | - Yafang Tan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, Unitd States of America
| | - Jianyong Qi
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| | - Minzhou Zhang
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| | - Weiwang Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou city, Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| |
Collapse
|
3
|
Qi JY, Wang L, Gu DS, Guo LH, Zhu W, Zhang MZ. Protective Effects of Danlou Tablet () against Murine Myocardial Ischemia and Reperfusion Injury In Vivo. Chin J Integr Med 2016; 24:613-620. [PMID: 27048409 DOI: 10.1007/s11655-016-2448-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To observe the in vivo effect of Danlou Tablet (, DLT) on myocardial ischemia and reperfusion (I/R) injury. METHODS DLT effects were evaluated in mouse heart preparation using 30-min coronary occlusion followed by 24-h reperfusion and compared among sham group (n=6), I/R group (n=8), IPC group (ischemia preconditioning, n=6) and DLT group (I/R with DLT pretreatment for 3 days, 750 mg•kg-1•day-1, n=8). The effects of DLT were characterized in infarction size (IS) compared with risk region (RR) and left ventricle using the Evans blue/triphenyltetrazolium chloride double dye staining method in vivo. Furthermore, the dose-dependent effect of DLT on I/R injury was evaluated by double staining method. Five different concentrations of DLT (0.625, 1.25, 2.5, 5 and 10 g•kg-1•day-1) were chosen in this study, and dose-response curve of DLT was obtained on these data. RESULTS The ratio of IS to left ventricle was significantly smaller in the DLT and IPC groups than the I/R group (P<0.05 or P<0.01), the ratio of IS to RR was also reduced in the DLT and IPC groups (P<0.01), while there were no differences in RR among the four groups (P>0.05). Experiments showed incidence of arrhythmias was reduced in the DLT group (P<0.01). Furthermore, DLT produced a dose-dependent inhibitory effect with a half maximal inhibitory concentration of 1.225 g•kg-1•day-1. CONCLUSIONS Our research concluded that DLT was effective in reducing I/R injury in mice, and provided experimental supports for the clinical use of DLT.
Collapse
Affiliation(s)
- Jian-Yong Qi
- Intensive Care Laboratory, Guangdong Province Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lei Wang
- Intensive Care Laboratory, Guangdong Province Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dong-Sheng Gu
- Department of Rheumatology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Li-Heng Guo
- Intensive Care Laboratory, Guangdong Province Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wei Zhu
- Network Pharmacology, Guangdong Province Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min-Zhou Zhang
- Intensive Care Laboratory, Guangdong Province Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|