1
|
Golubnitschaja O, Polivka J, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, Lackova L, Kubatka P, Kropp M, Thumann G, Erb C, Fröhlich H, Wang W, Baban B, Kapalla M, Shapira N, Richter K, Karabatsiakis A, Smokovski I, Schmeel LC, Gkika E, Paul F, Parini P, Polivka J. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J 2024; 15:1-23. [PMID: 38463624 PMCID: PMC10923756 DOI: 10.1007/s13167-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Holger Fröhlich
- Artificial Intelligence & Data Science Group, Fraunhofer SCAI, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT (B-It), University of Bonn, 53115 Bonn, Germany
| | - Wei Wang
- Edith Cowan University, Perth, Australia
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Babak Baban
- The Dental College of Georgia, Departments of Neurology and Surgery, The Medical College of Georgia, Augusta University, Augusta, USA
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Niva Shapira
- Department of Nutrition, School of Health Sciences, Ashkelon Academic College, Ashkelon, Israel
| | - Kneginja Richter
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders Skopje, University Goce Delcev, Faculty of Medical Sciences, Stip, North Macedonia
| | - Leonard Christopher Schmeel
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | | | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J 2022; 13:535-545. [PMID: 36415625 PMCID: PMC9670046 DOI: 10.1007/s13167-022-00307-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Due to the reactive medical approach applied to disease management, stroke has reached an epidemic scale worldwide. In 2019, the global stroke prevalence was 101.5 million people, wherefrom 77.2 million (about 76%) suffered from ischemic stroke; 20.7 and 8.4 million suffered from intracerebral and subarachnoid haemorrhage, respectively. Globally in the year 2019 — 3.3, 2.9 and 0.4 million individuals died of ischemic stroke, intracerebral and subarachnoid haemorrhage, respectively. During the last three decades, the absolute number of cases increased substantially. The current prevalence of stroke is 110 million patients worldwide with more than 60% below the age of 70 years. Prognoses by the World Stroke Organisation are pessimistic: globally, it is predicted that 1 in 4 adults over the age of 25 will suffer stroke in their lifetime. Although age is the best known contributing factor, over 16% of all strokes occur in teenagers and young adults aged 15–49 years and the incidence trend in this population is increasing. The corresponding socio-economic burden of stroke, which is the leading cause of disability, is enormous. Global costs of stroke are estimated at 721 billion US dollars, which is 0.66% of the global GDP. Clinically manifested strokes are only the “tip of the iceberg”: it is estimated that the total number of stroke patients is about 14 times greater than the currently applied reactive medical approach is capable to identify and manage. Specifically, lacunar stroke (LS), which is characteristic for silent brain infarction, represents up to 30% of all ischemic strokes. Silent LS, which is diagnosed mainly by routine health check-up and autopsy in individuals without stroke history, has a reported prevalence of silent brain infarction up to 55% in the investigated populations. To this end, silent brain infarction is an independent predictor of ischemic stroke. Further, small vessel disease and silent lacunar brain infarction are considered strong contributors to cognitive impairments, dementia, depression and suicide, amongst others in the general population. In sub-populations such as diabetes mellitus type 2, proliferative diabetic retinopathy is an independent predictor of ischemic stroke. According to various statistical sources, cryptogenic strokes account for 15 to 40% of the entire stroke incidence. The question to consider here is, whether a cryptogenic stroke is fully referable to unidentifiable aetiology or rather to underestimated risks. Considering the latter, translational research might be of great clinical utility to realise innovative predictive and preventive approaches, potentially benefiting high risk individuals and society at large. In this position paper, the consortium has combined multi-professional expertise to provide clear statements towards the paradigm change from reactive to predictive, preventive and personalised medicine in stroke management, the crucial elements of which are:Consolidation of multi-disciplinary expertise including family medicine, predictive and in-depth diagnostics followed by the targeted primary and secondary (e.g. treated cancer) prevention of silent brain infarction Application of the health risk assessment focused on sub-optimal health conditions to effectively prevent health-to-disease transition Application of AI in medicine, machine learning and treatment algorithms tailored to robust biomarker patterns Application of innovative screening programmes which adequately consider the needs of young populations
Stroke is a severe brain disease which has reached an epidemic scale worldwide: in 2019, the global stroke prevalence was 101.5 million people. The World Stroke Organisation predicted that globally, 1 in 4 adults over the age of 25 will get a stroke in their lifetime. Not only old people but also teenagers and young adults are affected. Current global costs of stroke are estimated at 721 billion US dollars. Due to undiagnosed so-called “silent” brain infarction, the number of affected individuals is about 14 times greater in the population than clinically recorded. If it remains untreated, silent brain infarction may cause many severe and fatal disorders such as dementia, depression and even suicide. In this position paper, the consortium describes how the rudimental approach to treating severely diseased people could be replaced by an innovative predictive and preventive one to protect people against the health-to-disease transition.
Collapse
|
3
|
Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D 2R-mediated Sleep Reduction. iScience 2020; 23:101240. [PMID: 32563157 PMCID: PMC7305386 DOI: 10.1016/j.isci.2020.101240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Individuals with the neuropsychiatric disorder mania exhibit hyperactivity, elevated mood, and a decreased need for sleep. The brain areas and neuronal populations involved in mania-like behaviors, however, have not been elucidated. In this study, we found that ablating the ventral medial midbrain/pons (VMP) GABAergic neurons induced mania-like behaviors in mice, including hyperactivity, anti-depressive behaviors, reduced anxiety, increased risk-taking behaviors, distractibility, and an extremely shortened sleep time. Strikingly, these mice also showed no rebound sleep after sleep deprivation, suggesting abnormal sleep homeostatic regulation. Dopamine D2 receptor deficiency largely abolished the sleep reduction induced by ablating the VMP GABAergic neurons without affecting the hyperactivity and anti-depressive behaviors. Our data demonstrate that VMP GABAergic neurons are involved in the expression of mania-like behaviors, which can be segregated to the short-sleep and other phenotypes on the basis of the dopamine D2 receptors. Hyperactivity and anti-depressive behaviors are induced by loss of VMP GABA neurons Homeostatic sleep rebound is lost together with largely shorten daily sleep Dopamine D2 receptors mediate the daytime sleep loss
Collapse
Affiliation(s)
- Takato Honda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Yohko Takata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
4
|
Barahona-Corrêa JB, Cotovio G, Costa RM, Ribeiro R, Velosa A, Silva VCE, Sperber C, Karnath HO, Senova S, Oliveira-Maia AJ. Right-sided brain lesions predominate among patients with lesional mania: evidence from a systematic review and pooled lesion analysis. Transl Psychiatry 2020; 10:139. [PMID: 32398699 PMCID: PMC7217919 DOI: 10.1038/s41398-020-0811-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
Despite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated. Here, we aimed to test whether focal brain lesions in lesional mania are more often right- than left-sided, and if lesions converge on areas relevant to mood regulation. We thus performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflect diagnoses and structures of interest, as well as lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, selecting reports of adult-onset hypomania, mania or mixed state following a focal brain lesion, for pooled-analyses of individual patient data. Eligible lesion images were manually traced onto the corresponding MNI space slices, and lesion topography analyzed using standard brain atlases. Using this approach, data from 211 lesional mania patients was extracted from 114 reports. Among 201 cases with focal lesions, more patients had lesions involving exclusively the right (60.7%) than exclusively the left (11.4%) hemisphere. In further analyses of 56 eligible lesion images, while findings should be considered cautiously given the potential for selection bias of published lesion images, right-sided predominance of lesions was confirmed across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, and several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions. Such pooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.
Collapse
Affiliation(s)
- J Bernardo Barahona-Corrêa
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Gonçalo Cotovio
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ricardo Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
| | - Vera Cruz E Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- Department of Neuroradiology, Hospital de Braga, Sete Fontes - São Victor, 4710-243, Braga, Portugal
| | - Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Suhan Senova
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Neurosurgery and PePsy Departments, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and Faculté de Médecine, Université Paris Est, Créteil, France
| | - Albino J Oliveira-Maia
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal.
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
5
|
Lee I, Nielsen K, Nawaz U, Hall MH, Öngür D, Keshavan M, Brady R. Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord 2019; 244:115-123. [PMID: 30340100 PMCID: PMC6785980 DOI: 10.1016/j.jad.2018.10.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuroimaging of psychiatric disease is challenged by the difficulty of establishing the causal role of neuroimaging abnormalities. Lesions that cause mania present a unique opportunity to understand how brain network disruption may cause mania in both lesions and in bipolar disorder. METHODS A literature search revealed 23 case reports with imaged lesions that caused mania in patients without history of bipolar disorder. We traced these lesions and examined resting-state functional Magnetic Resonance Imaging (rsfMRI) connectivity to these lesions and control lesions to find networks that would be disrupted specifically by mania-causing lesions. The results were then used as regions-of-interest to examine rsfMRI connectivity in patients with bipolar disorder (n = 16) who underwent imaging longitudinally across states of both mania and euthymia alongside a cohort of healthy participants scanned longitudinally. We then sought to replicate these results in independent cohorts of manic (n = 26) and euthymic (n = 21) participants with bipolar disorder. RESULTS Mania-inducing lesions overlap significantly in network connectivity. Mania-causing lesions selectively disrupt networks that include orbitofrontal cortex, dorsolateral prefrontal cortex, and temporal lobes. In bipolar disorder, the manic state was reflected in strong, significant, and specific disruption in network communication between these regions and regions implicated in bipolar pathophysiology: the amygdala and ventro-lateral prefrontal cortex. LIMITATIONS There was heterogeneity in the clinical characterization of mania causing lesions. CONCLUSIONS Lesions causing mania demonstrate shared and specific network disruptions. These disruptions are also observed in bipolar mania and suggest a convergence of multiple disorders on shared circuit dysfunction to cause mania.
Collapse
Affiliation(s)
- Ivy Lee
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kathryn Nielsen
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Uzma Nawaz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mei-Hua Hall
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roscoe Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Satzer D, Bond DJ. Mania secondary to focal brain lesions: implications for understanding the functional neuroanatomy of bipolar disorder. Bipolar Disord 2016; 18:205-20. [PMID: 27112231 DOI: 10.1111/bdi.12387] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Approximately 3.5 million Americans will experience a manic episode during their lifetimes. The most common causes are psychiatric illnesses such as bipolar I disorder and schizoaffective disorder, but mania can also occur secondary to neurological illnesses, brain injury, or neurosurgical procedures. METHODS For this narrative review, we searched Medline for articles on the association of mania with stroke, brain tumors, traumatic brain injury, multiple sclerosis, neurodegenerative disorders, epilepsy, and neurosurgical interventions. We discuss the epidemiology, features, and treatment of these cases. We also review the anatomy of the lesions, in light of what is known about the neurobiology of bipolar disorder. RESULTS The prevalence of mania in patients with brain lesions varies widely by condition, from <2% in stroke to 31% in basal ganglia calcification. Mania occurs most commonly with lesions affecting frontal, temporal, and subcortical limbic brain areas. Right-sided lesions causing hypo-functionality or disconnection (e.g., stroke; neoplasms) and left-sided excitatory lesions (e.g., epileptogenic foci) are frequently observed. CONCLUSIONS Secondary mania should be suspected in patients with neurological deficits, histories atypical for classic bipolar disorder, and first manic episodes after the age of 40 years. Treatment with antimanic medications, along with specific treatment for the underlying neurologic condition, is typically required. Typical lesion locations fit with current models of bipolar disorder, which implicate hyperactivity of left-hemisphere reward-processing brain areas and hypoactivity of bilateral prefrontal emotion-modulating regions. Lesion studies complement these models by suggesting that right-hemisphere limbic-brain hypoactivity, or a left/right imbalance, may be relevant to the pathophysiology of mania.
Collapse
Affiliation(s)
- David Satzer
- Medical School, University of Minnesota, Minneapolis, MN, USA
| | - David J Bond
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Late onset mania as an organic syndrome: A review of case reports in the literature. J Affect Disord 2015; 188:226-31. [PMID: 26368947 DOI: 10.1016/j.jad.2015.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/07/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
AIMS Although First Episode Mania presenting over the age of 50 is reported in several cases, there has been little systematic compilation of these case reports. We report a review of case reports on these subjects. METHODS We undertook a literature search on MEDLINE, PsychInfo and EMBASE to identify case reports of first episode of mania or hypomania presenting over the age of 50. RESULTS 35 cases were identified. 29/35 (82%) had a suspected underlying organic cause. Organic causes included vascular causes, iatrogenic drug use, electrolyte imbalance, dementia and thyroid disease. Vascular risk factors were present in 17/35 cases (48%). In 10/35 (28%) of cases organic treatment contributed to successful remission of the manic episode. LIMITATIONS As evidently not all cases have been reported the main limitation is that of publication bias for this paper. Any such hypothesis generated from studying these cases would require replication in prospective longitudinal trials of this cohort of patients. CONCLUSIONS This review of case reports appears to add to evidence of late onset mania having an organic basis. Whether this is a separate organic syndrome remains to be established. Our provisional findings suggest that such patients should have a thorough medical and psychiatric screening in identifying an underlying cause.
Collapse
|
8
|
Carta MG, Saba L, Moro MF, Demelia E, Sorbello O, Pintus M, Pintus E, Simavorian T, Akiskal H, Demelia L. Homogeneous magnetic resonance imaging of brain abnormalities in bipolar spectrum disorders comorbid with Wilson's disease. Gen Hosp Psychiatry 2015; 37:134-8. [PMID: 25772945 DOI: 10.1016/j.genhosppsych.2015.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND The purpose was to determine if brain damage in Wilson's disease (WD) is different in comorbid bipolar spectrum disorders (BDs), comorbid major depressive disorder (MDD) or without any mood disorders. METHODS An observational study was conducted on consecutive patients from a center for WD care. The study sample was divided by psychiatric assessment into WD without any mood disorders, WD with BDs and WD with MDD negative at Mood Disorder Questionnaire (MDQ). RESULTS Thirty-eight WD patients were recruited (53.2% females): 21 without mood disorders (55.2%), 9 with comorbid BDs (26.7%) and 8 with MDD without MDQ+ (21.1%). The BDs showed a higher frequency of brain damage, reaching statistically significant differences in the basal ganglia (P<.001), in the overall brain (P<.003) and at the limit in the white matter (P<.05). CONCLUSIONS In WD, comorbidity with BDs is associated with earlier evidence of brain damage, especially in the basal ganglia. The results confirm the importance of screening and early diagnosis of BDs in WD. Future follow-up studies on large samples are required to confirm if detection of BDs may be an early marker of brain damage and if a good therapeutic response in BDs may improve the prognosis of WD.
Collapse
Affiliation(s)
- Mauro Giovanni Carta
- Department of Public Health and Clinical and Molecular Medicine University of Cagliari, Italy, Cagliari, Italy.
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, Cagliari, 09045, Italy.
| | - Maria Francesca Moro
- Department of Public Health and Clinical and Molecular Medicine University of Cagliari, Italy, Cagliari, Italy.
| | - Enrico Demelia
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, Cagliari, 09045, Italy.
| | - Orazio Sorbello
- UOC of Gastroenterology, Azienda Ospedaliero - Universitaria, Cagliari, Italy.
| | - Mirra Pintus
- Department of Public Health and Clinical and Molecular Medicine University of Cagliari, Italy, Cagliari, Italy.
| | - Elisa Pintus
- Department of Public Health and Clinical and Molecular Medicine University of Cagliari, Italy, Cagliari, Italy.
| | | | - Hagop Akiskal
- International Mood Center, University of CA, San Diego, USA.
| | - Luigi Demelia
- UOC of Gastroenterology, Azienda Ospedaliero - Universitaria, Cagliari, Italy.
| |
Collapse
|