1
|
Dark Mold Infections in Solid Organ Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Villalobos APC, Husain S. Infection prophylaxis and management of fungal infections in lung transplant. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:414. [PMID: 32355858 PMCID: PMC7186682 DOI: 10.21037/atm.2020.03.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung transplantation has emerged as a lifesaving treatment for a wide range of advanced lung diseases. While the survival of lung transplant recipients continues to improve, infectious complications contribute substantially to morbidity and mortality following lung transplantation. The incidence of invasive fungal infections is variable, with a mean occurrence of 8.6%. The majority of fungal infections in lung transplant recipients are caused Aspergillus and Candida species. This review provides an update in the current approaches for the diagnosis, management and prevention of fungal infections and the late complications that are associated.
Collapse
Affiliation(s)
| | - Shahid Husain
- Multi-Organ Transplant Unit, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Wand O, Unterman A, Izhakian S, Fridel L, Kramer MR. Mucormycosis in lung transplant recipients: A systematic review of the literature and a case series. Clin Transplant 2020; 34:e13774. [PMID: 31860739 DOI: 10.1111/ctr.13774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mucormycosis is a rare infection in lung transplant recipients (LTR). Our objective was to better define the clinical presentation and optimal management of this frequently lethal infection. METHODS A systematic review of the literature was performed to identify all published cases of mucormycosis in LTR using PubMed/MEDLINE. These cases were analyzed together with a new case series from our clinic. RESULTS Literature search yielded 44 articles matching the inclusion criteria, describing 121 cases. Six additional cases were identified from our clinic. Data regarding infection site and outcome were available for a total of 53 patients. The lungs were the most common site of infection (62%), followed by rhinocerebral and disseminated disease. Most cases (78%) developed in the first post-transplant year, with over 40% of them in the first month. Additional risk factors for mucormycosis were identified in over half of the patients. Surgical debridement was uncommon in pulmonary infection (9%). Posaconazole therapy was used in 35% of cases, mostly in combination with amphotericin B. Overall mortality was 32% but varied according to site of infection. CONCLUSION Mucormycosis in LTRs tends to be an early post-surgical infection, associated with additional risk factors and intensified immunosuppressive states, and most often affects the lungs, where surgical debridement is rarely feasible. Posaconazole as first-line therapy should be further explored.
Collapse
Affiliation(s)
- Ori Wand
- Pulmonary Institute, Rabin Medical Center, Petach Tiqwa, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pulmonary Division, Meir Medical Center, Kfar-Sava, Israel
| | - Avraham Unterman
- Pulmonary Institute, Rabin Medical Center, Petach Tiqwa, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Yale University School of Medicine, New Haven, CT, USA
| | - Shimon Izhakian
- Pulmonary Institute, Rabin Medical Center, Petach Tiqwa, Israel
| | - Ludmila Fridel
- Pathology Institute, Rabin Medical Center, Petach Tiqwa, Israel
| | - Mordechai R Kramer
- Pulmonary Institute, Rabin Medical Center, Petach Tiqwa, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
5
|
Agnelli C, Valerio M, Olmedo M, Guinea J, Zatarain‐Nicolás E, del Carmen Martínez‐Jiménez M, Alcalá L, Escribano P, Cebollero Presmanes M, Bouza E, Muñoz P, Martín‐Rabadán P. Fatal disseminated infection by
Gymnascella hyalinospora
in a heart transplant recipient. Transpl Infect Dis 2019; 21:e13128. [DOI: 10.1111/tid.13128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Caroline Agnelli
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Maricela Valerio
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Jesús Guinea
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058) Madrid Spain
- Department of Medicine, Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
| | - Eduardo Zatarain‐Nicolás
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- Department of Cardiology Hospital General Universitario Gregorio Marañón Madrid Spain
| | - María del Carmen Martínez‐Jiménez
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - Pilar Escribano
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| | - María Cebollero Presmanes
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- Department of Pathology Hospital General Universitario Gregorio Marañón Madrid Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058) Madrid Spain
- Department of Medicine, Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058) Madrid Spain
- Department of Medicine, Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
| | - Pablo Martín‐Rabadán
- Department of Clinical Microbiology and Infectious Diseases Hospital General Universitario Gregorio Marañón Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
- Department of Medicine, Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
6
|
Kumar M, Mugunthan M, Kapoor R, Pandalanghat S. Speciation of fungi using real time PCR with molecular beacons: Can we solve the enigma of diagnosis of invasive fungal disease? Med J Armed Forces India 2019; 75:41-49. [PMID: 30705477 PMCID: PMC6349607 DOI: 10.1016/j.mjafi.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/15/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Invasive fungal diseases (IFDs) are difficult to diagnose and associated with high mortality rates, especially in the immunosuppressed. Species of Aspergillus and Candida are the cause of majority of invasive fungal disease however IFDs are also caused by Fusarium, Zygomycetes, Trichosporon, etc. Early detection is crucial for appropriate antifungal therapy. Blood cultures usually fail to isolate filamentous fungi, while detection of circulating beta-d-glucan or galactomannan antigens show variable sensitivity and specificity. There is a need of reliable, sensitive and specific diagnostic tests for IFDs. METHODS A real-time Polymerase Chain Reaction (PCR) assay with a universal primer/molecular beacon system was developed for detecting and speciating most of the pathogenic fungi implicated in IFD. A single-reaction assay was designed targeting a carefully selected region of the ITS2 and ITS5 subunits of the fungal rDNA gene along with four molecular beacons capable of differential hybridization to the amplicons of different species. This generated a signature set of melting temperatures using the standard strains. The assay was tested on clinical specimens from patients with suspected invasive fungal disease. RESULTS The assay was tested on 72 clinical samples and 72 healthy controls. Of these, 22 clinical samples (6/8 proven; 13/29 probable; 3/35 possible IFD, classified by the EORTC/MSG criteria) were positive by PCR and generated a set of melting temperatures enabling identification of the causative fungus. The assay was negative in all healthy controls. CONCLUSION The molecular beacon assay is a promising tool providing a rapid method for detection and monitoring of invasive fungal disease in immunosuppressed patients.
Collapse
Affiliation(s)
- Mahadevan Kumar
- Professor (Microbiology), Army Hospital (R&R), Delhi Cantt 110010, India
| | - M. Mugunthan
- Consultant (Microbiologist), Yashoda Hospital, Hyderabad, Telengana, India
| | - Rajan Kapoor
- Senior Adviser (Haematology), Army Hospital (R&R), Delhi Cantt 110010, India
| | - Suresh Pandalanghat
- Senior Adviser (Oncology), Command Hospital (Eastern Command), Kolkata, India
| |
Collapse
|
7
|
Retrospective evaluation of in vitro effect of gentamicin B1 against Fusarium species. Appl Microbiol Biotechnol 2018; 102:10353-10359. [PMID: 30315352 DOI: 10.1007/s00253-018-9407-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The in vitro susceptibility of gentamicin fractions against Fusarium growth was the subject of this retrospective study. Fusariosis was earlier an exceptionally rare human disease and an unrealistic idea to treat soil saprophytes and plant pathogens with expensive antibiotics such as gentamicins or their minor components. Disseminated fusariosis is now the second most frequent lethal fungal infection after aspergillosis especially in neutropenic patients with hematologic malignancy. Results of this study obtained between May and November 1973 were interesting but not practicable and remained unpublished. Seven Fusarium and 28 other fungal strains were tested for their susceptibility to gentamicin B1. The anti-Fusarium activity of gentamicin B1 was between 0.2 and 3.1 μg/ml minimum inhibitory concentration (MIC) values. The MIC values of clotrimazol and amphotericin B against Fusarium species were significantly higher, 3.1-12.5 μg/ml and 3.1-50 μg/ml, respectively. Gentamicin B1 and its structurally related congeners including hygromycin B, paromomycin, tobramycin (nebramycin factor 5'), nebramycin (nebramycin factor 4), and sisomicin exerted strong in vitro inhibition against Fusarium species between 0.2 and 12.5 μg/ml concentrations. The antibacterial MIC concentration of gentamicin B1 tested on 20 bacterial strains ranged between 0.1 and 50 μg/ml. Gentamicin B1, a minor fraction of the gentamicin complex, inhibited effectively the growth of Gram-positive (Staphylococcus, Streptococcus, Bacillus subtilis) bacteria and Gram-negative (Escherichia coli, Salmonella, Proteus, Pseudomonas) pathogens. Gentamicins and related aminoglycoside antibiotics are used in medical practice. It is proposed that due to the increasing incidence of fusariosis and drug resistance, gentamicin components, particularly minor fraction B1 and related aminoglycoside antibiotics, could be tested for their in vivo activity against fusariosis and aspergillosis either alone or in combination with other antifungal agents.
Collapse
|
8
|
Hsu JL, Manouvakhova OV, Clemons KV, Inayathullah M, Tu AB, Sobel RA, Tian A, Nazik H, Pothineni VR, Pasupneti S, Jiang X, Dhillon GS, Bedi H, Rajadas J, Haas H, Aurelian L, Stevens DA, Nicolls MR. Microhemorrhage-associated tissue iron enhances the risk for Aspergillus fumigatus invasion in a mouse model of airway transplantation. Sci Transl Med 2018; 10:10/429/eaag2616. [PMID: 29467298 PMCID: PMC5841257 DOI: 10.1126/scitranslmed.aag2616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
Abstract
Invasive pulmonary disease due to the mold Aspergillus fumigatus can be life-threatening in lung transplant recipients, but the risk factors remain poorly understood. To study this process, we used a tracheal allograft mouse model that recapitulates large airway changes observed in patients undergoing lung transplantation. We report that microhemorrhage-related iron content may be a major determinant of A. fumigatus invasion and, consequently, its virulence. Invasive growth was increased during progressive alloimmune-mediated graft rejection associated with high concentrations of ferric iron in the graft. The role of iron in A. fumigatus invasive growth was further confirmed by showing that this invasive phenotype was increased in tracheal transplants from donor mice lacking the hemochromatosis gene (Hfe-/- ). The invasive phenotype was also increased in mouse syngrafts treated with topical iron solution and in allograft recipients receiving deferoxamine, a chelator that increases iron bioavailability to the mold. The invasive growth of the iron-intolerant A. fumigatus double-knockout mutant (ΔsreA/ΔcccA) was lower than that of the wild-type mold. Alloimmune-mediated microvascular damage and iron overload did not appear to impair the host's immune response. In human lung transplant recipients, positive staining for iron in lung transplant tissue was more commonly seen in endobronchial biopsy sections from transplanted airways than in biopsies from the patients' own airways. Collectively, these data identify iron as a major determinant of A. fumigatus invasive growth and a potential target to treat or prevent A. fumigatus infections in lung transplant patients.
Collapse
Affiliation(s)
- Joe L. Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Olga V. Manouvakhova
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Karl V. Clemons
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Cardiovascular Pharmacology Division, Cardio-vascular Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Allen B. Tu
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Raymond A. Sobel
- Veterans Affairs Palo Alto Health Care System, Pathology and Laboratory Service, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Tian
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Hasan Nazik
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Medical Microbiology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Venkata R. Pothineni
- Biomaterials and Advanced Drug Delivery Laboratory, Cardiovascular Pharmacology Division, Cardio-vascular Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shravani Pasupneti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Xinguo Jiang
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA
| | - Gundeep S. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harmeet Bedi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Biomaterials and Advanced Drug Delivery Laboratory, Cardiovascular Pharmacology Division, Cardio-vascular Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Hubertus Haas
- Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David A. Stevens
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA 94304, USA,Corresponding author.
| |
Collapse
|
9
|
|
10
|
Falloon K, Juvvadi PR, Richards AD, Vargas-Muñiz JM, Renshaw H, Steinbach WJ. Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus. PLoS One 2015; 10:e0137869. [PMID: 26366742 PMCID: PMC4569257 DOI: 10.1371/journal.pone.0137869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/22/2015] [Indexed: 01/11/2023] Open
Abstract
Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn’t localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don’t play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn’t show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated “paradoxical growth effect” at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.
Collapse
Affiliation(s)
- Katie Falloon
- Duke University School of Medicine, Durham, NC, United States of America
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
| | - Amber D. Richards
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
| | - José M. Vargas-Muñiz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Hilary Renshaw
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
11
|
Haidar G, Falcione BA, Nguyen MH. Diagnostic Modalities for Invasive Mould Infections among Hematopoietic Stem Cell Transplant and Solid Organ Recipients: Performance Characteristics and Practical Roles in the Clinic. J Fungi (Basel) 2015; 1:252-276. [PMID: 29376911 PMCID: PMC5753113 DOI: 10.3390/jof1020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of hematopoietic stem cell and solid organ transplant patients with invasive fungal infections (IFIs) remain high despite an increase in the number of effective antifungal agents. Early diagnosis leading to timely administration of antifungal therapy has been linked to better outcomes. Unfortunately, the diagnosis of IFIs remains challenging. The current gold standard for diagnosis is a combination of histopathology and culture, for which the sensitivity is <50%. Over the past two decades, a plethora of non-culture-based antigen and molecular assays have been developed and clinically validated. In this article, we will review the performance of the current commercially available non-cultural diagnostics and discuss their practical roles in the clinic.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - Bonnie A Falcione
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 200 Lothrop St. 301, Pittsburgh, PA 15213, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|