1
|
Arab M, Behboodi P, Malek Khachatourian A, Nemati A. Enhanced mechanical properties and biocompatibility of hydroxyapatite scaffolds by magnesium and titanium oxides for bone tissue applications. Heliyon 2024; 10:e33847. [PMID: 39027606 PMCID: PMC11255589 DOI: 10.1016/j.heliyon.2024.e33847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Significant attention has been devoted to bioactive implants for bone tissue applications, particularly composite scaffolds based on hydroxyapatite (HaP). This study explores the effects of Magnesium and Titanium oxides on the characteristics of HaP-based composite (HMT) scaffolds. The ceramic nanopowders were synthesized using in situ sol-gel, and then the scaffolds were fabricated by gel-casting technique, followed by heat treatment at 1200 °C. The thermal, microstructural, and structural properties of the samples were investigated by different characterization techniques. It was observed that the formation of the MgTiO3 phase in the composite scaffold was likely the key factor contributing to the improved mechanical properties. Finally, to evaluate bioactivity and biodegradability, scaffolds were immersed in simulated body fluid (SBF) buffer and analyzed by Field Emission Scanning Electron Microscopy (FESEM), and the viability of human fibroblast cells was assessed using the MTT assay. The composite scaffolds containing the MgTiO3 phase showed greater HaP layer formation on the scaffold surface, indicating enhanced biocompatibility.
Collapse
Affiliation(s)
- Mehdi Arab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Panteha Behboodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Ali Nemati
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Chladek G, Kalamarz I, Pakieła W, Barszczewska-Rybarek I, Czuba Z, Mertas A. A Temporary Acrylic Soft Denture Lining Material Enriched with Silver-Releasing Filler-Cytotoxicity, Mechanical and Antifungal Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:902. [PMID: 38399153 PMCID: PMC10890124 DOI: 10.3390/ma17040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Colonization of temporary denture soft linings and underlying tissues by yeast-like fungi is an important clinical problem due to the negative influence on the process of prosthetic treatment. Typical hygienic procedures are often insufficient to prevent fungal infections, so in this study, an antimicrobial filler (silver sodium hydrogen zirconium phosphate) was introduced into acrylic soft liner at concentrations of 1, 2, 4, 6, 8 and 10% (w/w). The effect of this modification on antifungal properties against Candida albicans, cytotoxicity, Shore A hardness, tensile strength and tensile bond strength, sorption and solubility was investigated, considering the recommended 30-day period of temporary soft lining use. The most favorable compilation of properties was obtained at a 1 to 6% filler content, for which nearly a total reduction in Candida albicans was registered even after 30 days of sample storing. The tensile and bond strength of these composites was at the desired and stable level and did not differ from the results for the control material. Hardness increased with the increasing concentration in filler but were within the range typical for soft lining materials and their changes during the experiment were similar to the control material. The materials were not cytotoxic and sorption and solubility levels were stable.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Igor Kalamarz
- Igor Kalamarz Dental Practice, 6 Kotlarza Str., 40-139 Katowice, Poland;
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland;
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland; (Z.C.); (A.M.)
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland; (Z.C.); (A.M.)
| |
Collapse
|
3
|
Goenka S, Lee HM. Effect of Commercial Children's Mouthrinses and Toothpastes on the Viability of Neonatal Human Melanocytes: An In Vitro Study. Dent J (Basel) 2023; 11:287. [PMID: 38132425 PMCID: PMC10742640 DOI: 10.3390/dj11120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we examined the cytotoxic effects of six commercial children's mouthrinses (designated as #1, #2, #3, #4, #5, and #6) and four commercial children's toothpastes (designated as #1, #2, #3, and #4) on primary human neonatal melanocytes that were used as a representative model for oral melanocytes. Mouthrinses diluted directly with culture medium (1:2, 1:5, 1:10, 1:100, and 1:1000) were added to monolayers of melanocytes for 2 min, followed by 24 h recovery, after which MTS cytotoxicity assay was conducted. The extracts of each toothpaste were prepared (50% w/v), diluted in culture medium (1:2, 1:5, 1:10, 1:50, 1:100, and 1:1000), and added to cell monolayers for 2 min (standard brushing time), followed by an analysis of cell viability after 24 h. Results showed that all mouthrinses except mouthrinse #4 showed significantly greater loss of cell viability, ascribed to cetylpyridinium chloride (CPC) that induced significant cytotoxicity to melanocytes (IC50 = 54.33 µM). In the case of toothpastes, the examination of cellular morphology showed that a 2 min exposure to all toothpaste extracts induced a concentration-dependent decline in cell viability, pronounced in toothpaste containing sodium lauryl sulfate (SLS) detergent. Further results suggested SLS to be the critical driver of cytotoxicity (IC50 = 317.73 µM). It is noteworthy that toothpaste #1 exhibited much lower levels of cytotoxicity compared to the other three toothpastes containing SLS. Taken together, these findings suggest that the melanocytotoxicity of children's mouthrinse (#4) and toothpaste (#1) is comparatively low. To the best of our knowledge, this is the first study to examine the impact of children's toothpastes and mouthrinses on neonatal primary human melanocytes. Future studies to investigate these findings in a realistic scenario replicating oral cavity conditions of the presence of microbiota, pellicle layer and saliva, and other cell types are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
4
|
IgG Subclass Analysis in Patients with Chagas Disease 4 Years After Benznidazole Treatment. Acta Parasitol 2021; 66:1499-1509. [PMID: 34115282 DOI: 10.1007/s11686-021-00430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND In humans, Trypanosoma cruzi infection is controlled by a complex immune response. Immunoglobulin G (IgG) is important for opsonizing blood trypomastigotes, activating the classic complement pathway, and reducing parasitemia. The trypanocidal activity of benznidazole is recognized, but its effects on the prevention and progression of Chagas disease is not well understood OBJECTIVE: We aimed to evaluate the levels of total IgG and cross-specific IgG subclasses in patients with chronic Chagas disease of different clinical forms before and after 4 years of benznidazole treatment. METHODS Eight individuals with the indeterminate form and nine with the cardiac form who completed the treatment protocol were evaluated. The levels of total IgG and IgG1, IgG2, IgG3, and IgG4 isotypes were quantified in the serum of each individual using the fluorescent immunosorbent assay. The results are expressed as relative fluorescence unit. RESULTS Patients with chronic Chagas disease presented decreased levels of total IgG at 48 months after benznidazole treatment. Increased IgG1 and decreased IgG3 levels were observed in patients with the cardiac form and those with exacerbated clinical forms. In addition, a decrease in the IgG3/IgG1 ratio was observed in individuals with the cardiac form of Chagas disease. CONCLUSIONS Benznidazole administration in the chronic phase differentially changes IgG subclasses in patients with cardiac and indeterminate forms, and monitoring the IgG3 level may indicate the possible prognosis to the cardiac form or worsening of the already established clinical form.
Collapse
|
5
|
Space Maintainers Used in Pediatric Dentistry: An Insight of Their Biosecurity Profile by Applying In Vitro Methods. MATERIALS 2021; 14:ma14206215. [PMID: 34683807 PMCID: PMC8541494 DOI: 10.3390/ma14206215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
Space maintainers have presented an increased interest due to their chemical composition which influences the electrochemical and electrolytic processes of the oral cavity, leading to important biological activity. The present study was purported to evaluate the biological in vitro activity of three types of space maintainers (S1, S2, and S3, differing from each other in terms of metal composition) used in pediatric dentistry, in terms of their antimicrobial effect and biosecurity profile using two types of keratinocytes (PGK: primary gingival keratinocytes, and HaCaT: human immortalized keratinocytes) by assessing the morphology, viability, cytotoxicity, and gene expression of the cells. Statistical differences were calculated by the one-way ANOVA test, followed by Tukey’s post-test. Antimicrobial screening highlighted a dilution-dependent influence that, in the case of all strains tested, did not show inhibition or stimulation of bacterial growth. The in vitro evaluations revealed that the test samples did not induce important cytotoxic potential on both keratinocyte cell lines (HaCaT and PGK), with the cells manifesting no morphological alteration, a good viability rate (above 90%: PGK–S1, * p < 0.05), and a low cytotoxic activity (less than 11%: PGK, S1 *** p < 0.001 and S3 * p < 0.05; HaCaT, S1 ** p < 0.01). The data obtained in this study highlight the fact that the samples analyzed are biocompatible and do not develop the growth of the studied bacteria or encode the gene expression of primary and immortalized keratinocytes.
Collapse
|
6
|
Surface Characterization, Biocompatibility and Antifungal Efficacy of a Denture-Lining Material Containing Cnidium officinale Extracts. Molecules 2021; 26:molecules26051440. [PMID: 33799919 PMCID: PMC7962000 DOI: 10.3390/molecules26051440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, we investigated the surface characterization and biocompatibility of a denture-lining material containing Cnidium officinale extracts and its antifungal efficacy against Candida albicans. To achieve this, a denture-lining material containing various concentrations of C. officinale extract and a control group without C. officinale extract were prepared. The surface characterization and biocompatibility of the samples were investigated. In addition, the antifungal efficacy of the samples on C. albicans was investigated using spectrophotometric growth and a LIVE/DEAD assay. The results revealed that there was no significant difference between the biocompatibility of the experimental and control groups (p > 0.05). However, there was a significant difference between the antifungal efficiency of the denture material on C. albicans and that of the control group (p < 0.05), which was confirmed by the LIVE/DEAD assay. These results indicate the promising potential of the C. officinale extract-containing denture-lining material as an antifungal dental material.
Collapse
|
7
|
Ferreira DW, Ulecia-Morón C, Alvarado-Vázquez PA, Cunnane K, Moracho-Vilriales C, Grosick RL, Cunha TM, Romero-Sandoval EA. CD163 overexpression using a macrophage-directed gene therapy approach improves wound healing in ex vivo and in vivo human skin models. Immunobiology 2020; 225:151862. [PMID: 31711674 PMCID: PMC7864009 DOI: 10.1016/j.imbio.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Large tissue damage or wounds cause serious comorbidities and represent a major burden for patients, families, and health systems. Due to the pivotal role of immune cells in the proper resolution of inflammation and tissue repair, we focus our current study on the interaction of macrophages with skin cells, and specifically on the effects of CD163 gene induction in macrophages in wound healing. We hypothesize that the over-expression of the scavenger receptor gene CD163 in human macrophages would result in a more efficient wound healing process. Using 3D human wounded skin organotypic tissues, we observed that CD163 overexpression in THP-1 and human primary macrophages induced a more efficient re-epithelization when compared to control cells. Using human primary skin cells and an in vitro scratch assay we observed that CD163 overexpression in THP-1 macrophages promoted a more rapid and efficient wound healing process through a unique interaction with fibroblasts. The addition of CD163-blocking antibody, but not isotype control, blocked the efficient wound healing process induced by CD163 overexpression in macrophages. We found that the co-culture of skin cells and CD163 overexpressing macrophages reduced monocyte chemoattractant protein (MCP)-1 and enhanced tumor growth factor (TGF)-α, without altering interleukin (IL)-6 or TGF-β. Our findings show that CD163 induces a more efficient wound healing and seems to promote a wound milieu with a pro-resolution molecular profile. Our studies set the foundation to study this approach in in vivo clinically relevant settings to test its effects in wound healing processes such as acute major injuries, large surgeries, or chronic ulcers.
Collapse
Affiliation(s)
- David Wilson Ferreira
- Department of Pharmacology, University of São Paulo, Ribeirao Preto Medical School, 3900 Bandeirantes Ave., Ribeirão Preto, SP, 14049-900, Brazil; Department of Neurobiology, University of Pittsburgh School of Medicine, 3501 Fifth Ave - BST3, 6th floor, Pittsburgh, PA, 15260, USA.
| | - Cristina Ulecia-Morón
- Center for Biomedical Research Network on Mental Health (CIBERSAM), Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Department of Pharmacology and Toxicology, School of Medicine, and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University of Madrid, Avenida Complutense s/n., 28040, Madrid, Spain.
| | - Perla Abigail Alvarado-Vázquez
- Department of Anesthesiology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA; Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden.
| | - Katharine Cunnane
- Department of Anesthesiology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Carolina Moracho-Vilriales
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N Broad St., Clinton, SC, 29325, USA.
| | - Rachel L Grosick
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N Broad St., Clinton, SC, 29325, USA.
| | - Thiago Mattar Cunha
- Department of Pharmacology, University of São Paulo, Ribeirao Preto Medical School, 3900 Bandeirantes Ave., Ribeirão Preto, SP, 14049-900, Brazil.
| | - E Alfonso Romero-Sandoval
- Department of Anesthesiology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
8
|
Effect of artificial saliva with different pH levels on the cytotoxicity of soft denture lining materials. Int J Artif Organs 2017; 40:581-588. [PMID: 28665447 DOI: 10.5301/ijao.5000614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the cytotoxic effects of 9 different soft denture liners on the viability of L-929 mouse fibroblast cells at different incubation periods by storing them in artificial saliva (AS) with different pH levels. METHODS 96 disk samples from each lining material were prepared and divided into 4 groups: GI: No treatment; GII: Stored in artificial saliva with pH 3 for 21 days; Group III: Stored in artificial saliva with pH 7 for 21 days; and Group IV: Stored in artificial saliva with pH 14 for 21 days. The cytotoxicity of the extracts to cultured mouse fibroblasts (L-929) was measured by MTT (tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-dipHnyltetrazolium bromide) assay. Data were analyzed using 1-way analysis of variation (ANOVA). RESULTS It was found that for the pH 3 values of New Truliner, Trusoft, Mollosil Plus, Dentusil, TDV, and HydroCast®; for the pH 7 values of Ufi Gel P and Elite plus; and for the pH 14 values of HydroCast®, there was a noncytotoxic effect during both the 24-hour and 48-hour incubation periods. In the control group 48-hour incubation period, HydroCast®, TDV, Mollosil, 24-hour incubation period Elite plus, for pH 3 values; Elite Plus 24-hour incubation period, for pH 7 values Trusoft 48-hour incubation period there was a moderately cytotoxic effect. CONCLUSIONS This in vitro study revealed that storage in artificial saliva with different pH levels can affect the cytotoxicity of soft lining materials.
Collapse
|
9
|
Wala J, Maji D, Das S. Influence of physico-mechanical properties of elastomeric material for different cell growth. ACTA ACUST UNITED AC 2017; 12:065002. [PMID: 28691693 DOI: 10.1088/1748-605x/aa7e81] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tunable mechanical and physical properties of polydimethylsiloxane (PDMS) are commonly utilized for studying cellular dynamics. However, the inherent hydrophobic nature of PDMS limits its application as a cell culture film. Various surface modification techniques render PDMS films hydrophilic, altering their surface chemistry, elasticity, roughness and the cell attachment of anchorage-dependent cell types to the films. The surface properties of thin films lead to the alteration of the biomechano-physical properties of cells, so they can be used as a mechanical signature for the viability testing of different types of cell, such as normal and cancerous ones. In this study, 3T3 fibroblast and HaCaT keratinocyte cells were grown on different pristine and oxidized PDMS compositions by varying their base-to-curing-agent ratios (w/w). The enhanced wettability favors the cell spreading and growth rate of both 3T3 and HaCaT cells, and it varies with the film's surface chemistry and elasticity. This study focuses on the importance of understanding how various surface modification methods, like oxygen plasma and piranha treatment, can impact cell-cell and cell-substrate interaction for different cell types, thereby assisting in the preparation of various PDMS-based biomedical devices.
Collapse
Affiliation(s)
- Jyoti Wala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | | | | |
Collapse
|