Law DKS, Lefebvre B, Gilca R, Deng S, Zhou J, De Wals P, Tsang RSW. Characterization of invasive Neisseria meningitidis strains from Québec, Canada, during a period of increased serogroup B disease, 2009-2013: phenotyping and genotyping with special emphasis on the non-carbohydrate protein vaccine targets.
BMC Microbiol 2015;
15:143. [PMID:
26204985 PMCID:
PMC4514445 DOI:
10.1186/s12866-015-0469-6]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND
The epidemiology of invasive meningococcal disease (IMD) in Québec, Canada, has been dominated in the past decade by a clone of serogroup B (MenB) Neisseria meningitidis defined by multi-locus sequence typing (MLST) as sequence type (ST)-269. With the licensure of a new MenB vaccine Bexsero (4CMenB) in Canada, this study characterized invasive N. meningitidis recovered in Québec from 2009 to 2013, with an objective to examine the diversity of the 4CMenB vaccine antigens. Isolates were serogrouped by antisera and genogrouped by PCR, and further typed by whole cell ELISA for serotype and serosubtype antigens. Clonal analysis was done by MLST. Isolates were genotyped by analysis of their 4CMenB vaccine antigen genes of PorA, factor H binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria Adhesin A (NadA).
RESULTS
Of the 263 IMD isolates analysed, 229, 16, 10, 7, and 1 belonged to MenB, MenY, MenW, MenC, and MenX, respectively. Of the 229 MenB, 159 (69.4 %) were typed as ST-269 clonal complex (CC); and they possessed a restricted number of three fHbp and five nhba gene alleles. Nine N. meningitidis isolates (eight MenB and one MenY) were found to possess at least one gene that encoded for an antigen that matched exactly with protein variants in the 4CMenB vaccine. Two MenB expressed PorA antigen P1.4 and possessed the nhba gene for peptide 2; four other MenB were predicted to have NHBA peptide 2; another two MenB were predicted to encode fHbp peptide 1.1; and a single MenY was found to have nadA gene for NadA peptide 8. In addition, another 172 isolates were found to possess genes for variant 1 fHbp peptides other than peptide 1.1 or NadA variant 1-2/3 peptides other than peptide 8; and therefore, may potentially be covered by 4CMenB.
CONCLUSION
The most prevalent clone of N. meningitidis in Quebec was ST-269 CC; and 96 % of the isolates in this CC were predicted to be covered by 4CMenB vaccine. Extensive genetic diversity was found in the other IMD isolates in Québec which might suggest a lower coverage by the vaccine when compared to the ST-269 MenB.
Collapse