1
|
GABA A and GABA B Receptors Mediate GABA-Induced Intracellular Ca 2+ Signals in Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233860. [PMID: 36497118 PMCID: PMC9739010 DOI: 10.3390/cells11233860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.
Collapse
|
2
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Son M, Oh S, Lee HS, Choi J, Lee BJ, Park JH, Park CH, Son KH, Byun K. Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:27-38. [PMID: 33361535 PMCID: PMC7756537 DOI: 10.4196/kjpp.2021.25.1.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABAsalt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21999, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Hye Sun Lee
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Junwon Choi
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21999, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Busan 46048, Korea
| | | | - Chul Hyun Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Kyunghee Byun
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21999, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| |
Collapse
|
4
|
Hansen J, Galatioto J, Caescu CI, Arnaud P, Calizo RC, Spronck B, Murtada SI, Borkar R, Weinberg A, Azeloglu EU, Bintanel-Morcillo M, Gallo JM, Humphrey JD, Jondeau G, Boileau C, Ramirez F, Iyengar R. Systems pharmacology-based integration of human and mouse data for drug repurposing to treat thoracic aneurysms. JCI Insight 2019; 4:127652. [PMID: 31167969 DOI: 10.1172/jci.insight.127652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Marfan syndrome (MFS) is associated with mutations in fibrillin-1 that predispose afflicted individuals to progressive thoracic aortic aneurysm (TAA) leading to dissection and rupture of the vessel wall. Here we combined computational and experimental approaches to identify and test FDA-approved drugs that may slow or even halt aneurysm progression. Computational analyses of transcriptomic data derived from the aortas of MFS patients and MFS mice (Fbn1mgR/mgR mice) predicted that subcellular pathways associated with reduced muscle contractility are key TAA determinants that could be targeted with the GABAB receptor agonist baclofen. Systemic administration of baclofen to Fbn1mgR/mgR mice validated our computational prediction by mitigating arterial disease progression at the cellular and physiological levels. Interestingly, baclofen improved muscle contraction-related subcellular pathways by upregulating a different set of genes than those downregulated in the aorta of vehicle-treated Fbn1mgR/mgR mice. Distinct transcriptomic profiles were also associated with drug-treated MFS and wild-type mice. Thus, systems pharmacology approaches that compare patient- and mouse-derived transcriptomic data for subcellular pathway-based drug repurposing represent an effective strategy to identify potential new treatments of human diseases.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josephine Galatioto
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cristina I Caescu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pauline Arnaud
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France.,LVTS, INSERM U1148, Université Paris Diderot, Hôpital Bichat, Paris, France
| | - Rhodora C Calizo
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Roshan Borkar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Alan Weinberg
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U Azeloglu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Bintanel-Morcillo
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Guillaume Jondeau
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France.,LVTS, INSERM U1148, Université Paris Diderot, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France.,LVTS, INSERM U1148, Université Paris Diderot, Hôpital Bichat, Paris, France
| | - Francesco Ramirez
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Kamendi H, Barthlow H, Lengel D, Beaudoin ME, Snow D, Mettetal JT, Bialecki RA. Quantitative pharmacokinetic-pharmacodynamic modelling of baclofen-mediated cardiovascular effects using BP and heart rate in rats. Br J Pharmacol 2016; 173:2845-58. [PMID: 27448216 DOI: 10.1111/bph.13561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen-mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular-relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. EXPERIMENTAL APPROACH Han-Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg(-1) , p.o.) at 4 h intervals and baclofen-mediated changes in parameters recorded. A pharmacokinetic-pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. KEY RESULTS Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. CONCLUSIONS AND IMPLICATIONS The systems pharmacology model developed fits baclofen-mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances.
Collapse
Affiliation(s)
- Harriet Kamendi
- Drug Safety and Metabolism, AstraZeneca-US, Waltham, MA, USA
| | | | - David Lengel
- Drug Safety and Metabolism, AstraZeneca-US, Waltham, MA, USA
| | | | - Debra Snow
- Drug Safety and Metabolism, AstraZeneca-US, Waltham, MA, USA
| | | | | |
Collapse
|