1
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
2
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Hall G, Spurney RF. Losing their footing: Rac1 signaling causes podocyte detachment and FSGS. Kidney Int 2019; 92:283-285. [PMID: 28709595 DOI: 10.1016/j.kint.2017.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/26/2022]
Abstract
Selective modulation of Rho GTPase activity in podocytes recapitulates characteristic features of human nephrosis. Using a mouse model, Robins et al. found that high levels of Rac1 activation in podocytes caused podocyte detachment and glomerulosclerosis. Podocyte Rac1 activity was enhanced in biopsy specimens from patients with nephrosis, and serum from this patient population activated Rac1 in cultured podocytes. These data provide a causal link between podocyte Rac1 activation and human nephrotic diseases.
Collapse
Affiliation(s)
- Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA.
| |
Collapse
|
4
|
Yee A, Papillon J, Guillemette J, Kaufman DR, Kennedy CRJ, Cybulsky AV. Proteostasis as a therapeutic target in glomerular injury associated with mutant α-actinin-4. Am J Physiol Renal Physiol 2018; 315:F954-F966. [PMID: 29873512 DOI: 10.1152/ajprenal.00082.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in α-actinin-4 (actinin-4) result in hereditary focal segmental glomerulosclerosis (FSGS) in humans. Actinin-4 mutants induce podocyte injury because of dysregulation of the cytoskeleton and proteotoxicity. Injury may be associated with endoplasmic reticulum (ER) stress and polyubiquitination of proteins. We assessed if the chemical chaperone 4-phenylbutyrate (4-PBA) can ameliorate the proteotoxicity of an actinin-4 mutant. Actinin-4 K255E, which causes FSGS in humans (K256E in the mouse), showed enhanced ubiquitination, accelerated degradation, aggregate formation, and enhanced association with filamentous (F)-actin in glomerular epithelial cells (GECs). The mutant disrupted ER function and stimulated autophagy. 4-PBA reduced actinin-4 K256E aggregation and its tight association with F-actin. Transgenic mice that express actinin-4 K256E in podocytes develop podocyte injury, proteinuria, and FSGS in association with glomerular ER stress. Treatment of these mice with 4-PBA in the drinking water over a 10-wk period significantly reduced albuminuria and ER stress. Another drug, celastrol, which enhanced expression of ER and cytosolic chaperones in GECs, tended to reduce actinin-4 aggregation but did not decrease the tight association of actinin-4 K256E with F-actin and did not reduce albuminuria in actinin-4 K256E transgenic mice. Thus, chemical chaperones, such as 4-PBA, may represent a novel therapeutic approach to certain hereditary glomerular diseases.
Collapse
Affiliation(s)
- Albert Yee
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Daniel R Kaufman
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Chris R J Kennedy
- Kidney Research Centre, Department of Medicine, The Ottawa Hospital, University of Ottawa , Ottawa, Ontario , Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
5
|
Robins R, Baldwin C, Aoudjit L, Côté JF, Gupta IR, Takano T. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int 2017; 92:349-364. [PMID: 28483380 DOI: 10.1016/j.kint.2017.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
Abstract
Hyper-activation of Rac1, a small GTPase, in glomerular podocytes has been implicated in the pathogenesis of familial proteinuric kidney diseases. However, the role of Rac1 in acquired nephrotic syndrome is unknown. To gain direct insights into this, we generated a transgenic mouse model expressing a doxycycline-inducible constitutively active form of Rac1 (CA-Rac1) in podocytes. Regardless of the copy number, proteinuria occurred rapidly within five days, and the histology resembled minimal change disease. The degree and severity of proteinuria were dependent on the transgene copy number. Upon doxycycline withdrawal, proteinuria resolved completely (one copy) or nearly completely (two copy). After one month of doxycycline treatment, two-copy mice developed glomerulosclerosis that resembled focal segmental glomerulosclerosis (FSGS) with urinary shedding of transgene-expressing podocytes. p38 MAPK was activated in podocytes upon CA-Rac1 induction while a p38 inhibitor attenuated proteinuria, podocyte loss, and glomerulosclerosis. Mechanistically, activation of Rac1 in cultured mouse podocytes reduced adhesiveness to laminin and induced redistribution of β1 integrin, and both were partially reversed by the p38 inhibitor. Activation of Rac1 in podocytes was also seen in kidney biopsies from patients with minimal change disease and idiopathic FSGS by immunofluorescence while sera from the same patients activated Rac1 in cultured human podocytes. Thus, activation of Rac1 in podocytes causes a spectrum of disease ranging from minimal change disease to FSGS, due to podocyte detachment from the glomerular basement membrane that is partially dependent on p38 MAPK.
Collapse
Affiliation(s)
- Richard Robins
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Cindy Baldwin
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Department of Medicine (Program of Molecular Biology), Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Indra R Gupta
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|