1
|
Janmohammadi M, Doostmohammadi N, Bahraminasab M, Nourbakhsh MS, Arab S, Asgharzade S, Ghanbari A, Satari A. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Int J Biol Macromol 2024; 270:132361. [PMID: 38750857 DOI: 10.1016/j.ijbiomac.2024.132361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Nesa Doostmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Asgharzade
- Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Atefeh Satari
- Department of Molecular Medicine, of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Nguyen N, Nguyen T, Le Hong P, Ta TKH, Phan BT, Ngoc HNT, Bich HPT, Yen ND, Van TV, Nguyen HT, Ngoc DTT. Application of Coating Chitosan Derivatives (N,O-Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality. Foods 2023; 12:4012. [PMID: 37959131 PMCID: PMC10650730 DOI: 10.3390/foods12214012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The postharvest preservation of Ngoc Linh ginseng (NL ginseng) is essential to retain its quality and sensory values for prolonged storage. In this study, the efficacy of NL ginseng preservation by coating chitosan derivatives in combination with polyvinyl alcohol (PVA) solutions was investigated under refrigeration conditions (~3 °C; ~40% RH) for 56 days. The effect of the chitosan-based solutions, including N,O-carboxymethyl chitosan (NOCC), chitosan oligomer saccharide (COS), or chitosan (CS), and the blend solutions (NOCC-PVA or COS-PVA) on the coated NL ginsengs was observed during storage. The pH values, viscosity, and film-forming capability of the coating solutions were determined, while the visual appearance, morphology, and mechanical properties of the films formed on glass substrates as a ginseng model for coating were also observed. The appearance, skin lightness, weight loss, sensory evaluation, total saponin content (TSC), total polyphenol content (TPC), and total antioxidant capacity (TAC) of the coated NL ginsengs were evaluated. The findings showed that the observed values of the coated NL ginsengs were better than those of the non-coated samples, with the exception of the COS-coated samples, which had completely negative results. Furthermore, the NOCC-PVA solution exhibited a better preservation effect compared with the COS-PVA one based on the observed indices, except for TPC and TAC, which were not impacted by the coating. Notably, the optimal preservation time was determined to be 35 days. This study presents promising preservation technology using the coating solution of NOCC-PVA, harnessing the synergistic effect of pH 7.4 and the form-firming capacity, to maintain the shelf life, medicinal content, and sensory attributes of NL ginseng.
Collapse
Affiliation(s)
- Ngoc Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Trieu Nguyen
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA
| | - Phu Le Hong
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Thi Kieu Hanh Ta
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Center for Innovative Materials and Architectures, Ho Chi Minh 700000, Vietnam
| | - Bach Thang Phan
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Center for Innovative Materials and Architectures, Ho Chi Minh 700000, Vietnam
| | - Hanh Nguyen Thi Ngoc
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
| | - Hang Phung Thi Bich
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Nhi Dinh Yen
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Toi Vo Van
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hiep Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Diep Tran Thi Ngoc
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
- Centre for Innovation and Technology Transfer, International University, Ho Chi Minh 700000, Vietnam
| |
Collapse
|
3
|
Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs 2023; 21:md21050304. [PMID: 37233498 DOI: 10.3390/md21050304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Krishnamurithy Genasan
- Department of Physiology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
4
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering (Basel) 2023; 10:394. [PMID: 37106581 PMCID: PMC10136332 DOI: 10.3390/bioengineering10040394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Chern Chung Ong
- Fabbxible Technology, 11a Jalan IKS Bukit Tengah, Tmn IKS Bukit Tengah, Bukit Mertajam 14000, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
5
|
Hosseini M, Dalley AJ, Shafiee A. Convergence of Biofabrication Technologies and Cell Therapies for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14122749. [PMID: 36559242 PMCID: PMC9785239 DOI: 10.3390/pharmaceutics14122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell therapy holds great promise for cutaneous wound treatment but presents practical and clinical challenges, mainly related to the lack of a supportive and inductive microenvironment for cells after transplantation. Main: This review delineates the challenges and opportunities in cell therapies for acute and chronic wounds and highlights the contribution of biofabricated matrices to skin reconstruction. The complexity of the wound healing process necessitates the development of matrices with properties comparable to the extracellular matrix in the skin for their structure and composition. Over recent years, emerging biofabrication technologies have shown a capacity for creating complex matrices. In cell therapy, multifunctional material-based matrices have benefits in enhancing cell retention and survival, reducing healing time, and preventing infection and cell transplant rejection. Additionally, they can improve the efficacy of cell therapy, owing to their potential to modulate cell behaviors and regulate spatiotemporal patterns of wound healing. CONCLUSION The ongoing development of biofabrication technologies promises to deliver material-based matrices that are rich in supportive, phenotype patterning cell niches and are robust enough to provide physical protection for the cells during implantation.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Andrew J. Dalley
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Correspondence: or
| |
Collapse
|
6
|
Razmjooee K, Oustadi F, Golaghaei A, Nassireslami E. Carboxymethyl chitosan-alginate hydrogel containing GSNO with the ability to nitric oxide release for diabetic wound healing. Biomed Mater 2022; 17. [PMID: 35931062 DOI: 10.1088/1748-605x/ac877c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Today, despite significant progress in developing skin tissue engineering products, the fabrication of an ideal wound dressing that could meet the essential criteria, such as promoting angiogenesis -mainly in a diabetic wound- still remains a challenge. A diabetic wound is a chronic wound in which vascularization is low, and the wound healing process may stop. In this regard, Nitric oxide (NO) enhances the healing of diabetic wounds by promoting angiogenesis and providing antibacterial activity in wound sites. In this study, we produced a NO-releasing wound dressing (CMC-ALg-GSNO) composed of Carboxymethyl chitosan (CMC), sodium alginate (ALg), and Snitrosoglutathione (GSNO). The results obtained from the scanning electron microscopy (SEM) show that wound dressing has a porous structure. The water uptake and water vapor transmission for the wound dressing were obtained 4354.1 ± 179.3 % and 2753.8 ± 54.6 g/m2 per day, respectively. NO release study showed that NO release from CMC-ALg-GSNO continuously occurred within 168 hours. In vivo test, The CMC-ALg-GSNO wound dressing developed wound healing in a rat model of full-thickness diabetic wounds compared to the CMC-ALg and Gauze wound dressings. Thus, this study showed that CMC-ALg-GSNO wound dressing could lead to novel therapeutic invasions to treat diabetic wounds.
Collapse
Affiliation(s)
- Kavoos Razmjooee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Fereshteh Oustadi
- Amirkabir University of Technology, Unit 5, No.1,Emamreza St. North Poonak, Second East Ally, Tehran, Tehran, 1477695876, Iran (the Islamic Republic of)
| | - Alireza Golaghaei
- Aja University of Medical Sciences, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Ehsan Nassireslami
- Aja University of Medical Sciences, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| |
Collapse
|
7
|
Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Zhou J, Wu X, Zhao C. Optimization of decellularized liver matrix-modified chitosan fibrous scaffold for C3A hepatocyte culture. J Biomater Appl 2022; 37:903-917. [PMID: 35834434 DOI: 10.1177/08853282221115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hepatocyte scaffold is an essential part in bioartificial liver device. We have designed a novel hepatocyte scaffold based on porcine liver extracellular matrix (ECM) and chitosan (CTS) fabrics. This CTS-ECM scaffold can improve cell adhesion and proliferation. In the present study, an orthogonal test was designed to optimize the CTS/ECM composite scaffold, in which ECM concentration, EDC concentration and EDC to NHS ratio were taken as factors, proportion of nitrogen element and hydroxyproline content as indicators. The cytocompatibility of the novel scaffold for C3A hepatocytes was analyzed in vitro. The orthogonal test demonstrated that the optimal scaffold should be based on ECM concentration of 5 mg/mL, EDC concentration of 5 mg/mL, and EDC to NHS ratio 1:1. C3A hepatocytes cultured on the optimized CTS-ECM scaffolds showed stronger proliferation and functionality than those on Cytodex3 microcarriers (p < 0.05). The CTS/ECM composite scaffold may be widely used as a promising hepatocyte culture carrier, especially in bioartificial liver support systems.
Collapse
Affiliation(s)
- Junjing Zhou
- Department of Hepatobiliary Surgery, 199193Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xinglian Wu
- Department of pharmacy, 117969The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chaochen Zhao
- Department of Hepatobiliary Surgery, 117969The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Xu N, Zhang M, Xu W, Ling G, Yu J, Zhang P. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level. Analyst 2022; 147:1478-1491. [PMID: 35285841 DOI: 10.1039/d1an02288a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstitial skin fluid (ISF) is an emerging alternative source of blood samples that has attracted great interest from researchers. It is a very promising way to use microneedle patches for extracting ISF. However, the recovery of ISF still faces great challenges, such as long extraction time and low extraction volume, which may affect the analysis of biomarkers. Traditional centrifugation methods cannot completely recover ISF, which leads to inaccuracy in ISF detection. In this paper, the prepared polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) microneedle patches had the ability to insert into the skin in a dry state; at the same time, the microneedle patches had good swelling properties and could extract ISF in a short time without any additional devices. Due to the thermal degradation of PVA, the way of gentle heating was used to recover ISF, which could greatly improve the accuracy of detection. By comparing the D-glucose content assay kit with the blood glucose concentration of rats detected using a commercial glucometer, the detection accuracy of the microneedle patches was verified. The microneedle patches can be used to sample ISF and analyze the level of biomarkers in ISF, and are expected to provide a basis for the prevention and diagnosis of clinical diseases in the future.
Collapse
Affiliation(s)
- Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Manyue Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Wenxin Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
10
|
Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. Int J Pharm 2022; 617:121612. [PMID: 35218899 DOI: 10.1016/j.ijpharm.2022.121612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 01/18/2023]
Abstract
Poly(vinyl alcohol) (PVA) and carbomer were used as the hydrogel system to fabricate glabridin-loaded hydrogel-forming microneedles (HFMNs) by chemical cross-linking (CCMNs) and physical cross-linking (PCMNs). The properties and drug permeation effect of glabridin-loaded HFMNs with different methods were compared. They both owned excellent shape, mechanical and insertion properties. PCMNs showed a collapsed shape during swelling due to the low cross-linking rate and high porosity, probably resulting in resealing of skin pores during transdermal delivery. However, CCMNs could rapidly swell within 2 h with slightly bending. The infrared spectra indicated that CCMNs and PCMNs might form the hydrogel network by generating hydrogen and covalent bonds, respectively. The in vitro release studies showed that cumulative permeation amount within 24 h (1654 μg/cm2) of CCMNs, significantly higher than that (372 μg/cm2) achieved by PCMNs and that (118 μg/cm2) achieved by glabridin-loaded gel. The skin barrier recovery test suggests the desirable security of both microneedles (MNs), notwithstanding the presence of mild erythema in the mouse skin applied CCMNs. These results indicated that CCMNs were more desirable for glabridin delivery using PVA and carbomer as a skeleton of the hydrogel network.
Collapse
|
11
|
Altuntaş E, Tekko IA, Vora LK, Kumar N, Brodsky R, Chevallier O, McAlister E, Kurnia Anjani Q, McCarthy HO, Donnelly RF. Nestorone nanosuspension-loaded dissolving microneedles array patch: A promising novel approach for "on-demand" hormonal female-controlled peritcoital contraception. Int J Pharm 2021; 614:121422. [PMID: 34958899 DOI: 10.1016/j.ijpharm.2021.121422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
"On demand" hormonal female-controlled pericoital contraception is one strategy which could be used to minimize the impact of unintended pregnancy. Nestorone (NES) is a potent contraceptive, with relatively few side effects in comparison with other contraceptives. NES presents an attractive option for "on demand" pericoital contraceptive. Unfortunately, the drug is inactive if taken orally, but it has high progestational activity and antiovulatory potency if administered parenterally. Current drug delivery systems, such as a transdermal hydrogel are not so satisfactory. Dissolving microneedles array (DMNs) are an attractive alternative, minimally-invasive, delivery system. In this study, we report, for the first time, development of tip-loaded NES-nanosuspension (NES-NS)-loaded bilayer DMNs to deliver NES intradermally for subsequent release. NES-NS was prepared and optimised, freeze-dried and then used to fabricate DMNs using a blend of two biocompatible polymers, namely poly(vinyl alcohol) and poly(vinyl pyrrolidone). Both NES-NS and the NES-NS-loaded DMNs were fully characterised and the performance of the DMNs was evaluated in vivo using Sprague Dawley rats. Results showed that the finalised NES-NS had particle size and PDI values of 666.06 ± 1.86 nm and 0.183 ± 0.01, respectively. The NES-NS-DMNs had relatively high tips-localised drug loading (approximately 2.26 ± 1.98 mg/array) and exhibited satisfactory mechanical and insertion properties. In Sprague Dawley rats, DMNs delivered NES into the skin, with the drug then appearing in blood and rapidly reaching its maximum concentration (Cmax of 32.68 ± 14.06 ng/mL) within 1h post-DMNs application. Plasma levels above 3.4 ng/mL were maintained for 2 days. This suggests that DMNs are a promising drug delivery system that could be used to deliver NES as an "On demand" hormonal female-controlled pericoital contraceptive.
Collapse
Affiliation(s)
- Ebru Altuntaş
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34416, Fatih, Istanbul, Turkey
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Narender Kumar
- Center for Biomedical Research, The Population Council, New York, NY, USA
| | - Rebecca Brodsky
- Center for Biomedical Research, The Population Council, New York, NY, USA
| | - Olivier Chevallier
- Avignon Université, Campus Jean-Henri Fabre, 301 rue Baruch de Spinoza BP 21239, 84911 Avignon cedex 9, France; Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
12
|
Parın FN, Ullah S, Yıldırım K, Hashmi M, Kim IS. Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays. Polymers (Basel) 2021; 13:3594. [PMID: 34685351 PMCID: PMC8537833 DOI: 10.3390/polym13203594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The fabrication of skin-care products with therapeutic properties has been significant for human health trends. In this study, we developed efficient hydrophilic composite nanofibers (NFs) loaded with the folic acid (FA) by electrospinning and electrospraying processes for tissue engineering or wound healing cosmetic applications. The morphological, chemical and thermal characteristics, in vitro release properties, and cytocompatibility of the resulting composite fibers with the same amount of folic acid were analyzed. The SEM micrographs indicate that the obtained nanofibers were in the nanometer range, with an average fiber diameter of 75-270 nm and a good porosity ratio (34-55%). The TGA curves show that FA inhibits the degradation of the polymer and acts as an antioxidant at high temperatures. More physical interaction between FA and matrices has been shown to occur in the electrospray process than in the electrospinning process. A UV-Vis in vitro study of FA-loaded electrospun fibers for 8 h in artificial acidic (pH 5.44) and alkaline (pH 8.04) sweat solutions exhibited a rapid release of FA-loaded electrospun fibers, showing the effect of polymer matrix-FA interactions and fabrication processes on their release from the nanofibers. PVA-CHi/FA webs have the highest release value, with 95.2% in alkaline media. In acidic media, the highest release (92%) occurred on the PVA-Gel-CHi/sFA sample, and this followed first-order and Korsmeyer-Peppas kinetic models. Further, the L929 cytocompatibility assay results pointed out that all NFs (with/without FA) generated had no cell toxicity; on the contrary, the FA in the fibers facilitates cell growth. Therefore, the nanofibers are a potential candidate material in skin-care and tissue engineering applications.
Collapse
Affiliation(s)
- Fatma Nur Parın
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Kenan Yıldırım
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| |
Collapse
|
13
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
14
|
The impact of 3D-printed LAY-FOMM 40 and LAY-FOMM 60 on L929 cells and human oral fibroblasts. Clin Oral Investig 2020; 25:1869-1877. [PMID: 32951123 PMCID: PMC7966624 DOI: 10.1007/s00784-020-03491-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
Objectives LAY-FOMM is a promising material for FDA-approved Fused Deposition Modeling (FDM) applications in drug delivery. Here we investigated the impact on oral cells. Materials and methods We evaluated the impact of 3D-printed LAY-FOMM 40, LAY-FOMM 60, and biocompatible polylactic acid (PLA) on the activity of murine L929 cells, gingival fibroblasts (GF), and periodontal ligament fibroblasts (PDLF) using indirect (samples on cells), direct monolayer culture models (cells on samples), and direct spheroid cultures with resazurin-based toxicity assay, confirmed by MTT and Live-dead staining. The surface topography was evaluated with scanning electron microscopy. Results The materials LAY-FOMM 40 and LAY-FOMM 60 led to a reduction in resazurin conversion in L929 cells, GF, and PDLF, higher than the impact of PLA in indirect and direct culture models. Fewer vital cells were found in the presence of LAY-FOMM 40 and 60 than PLA, in the staining in both models. In the direct model, LAY-FOMM 40 and PLA showed less impact on viability in the resazurin-based toxicity assay than in the indirect model. Spheroid microtissues showed a reduction of cell activity of GF and PDLF with LAY-FOMM 40 and 60. Conclusion Overall, we found that LAY-FOMM 40 and LAY-FOMM 60 can reduce the activity of L292 and oral cells. Based on the results from the PLA samples, the direct model seems more reliable than the indirect model. Clinical relevance A material modification is desired in terms of biocompatibility as it can mask the effect of drugs and interfere with the function of the 3D-printed device.
Collapse
|
15
|
Tekko IA, Permana AD, Vora L, Hatahet T, McCarthy HO, Donnelly RF. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur J Pharm Sci 2020; 152:105469. [PMID: 32679177 PMCID: PMC7417809 DOI: 10.1016/j.ejps.2020.105469] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX), typically used as its sodium salt (MTX Na), is a first-line treatments for moderate to severe psoriasis, showing good efficacy. However, its systemic administration is associated with many side effects. Intradermal delivery into psoriatic tissue could offer an alternative approach. However, successful intradermal administration of MTX Na is currently precluded by its physicochemical properties. Moreover, due to its hydrophilic nature, MTX Na is swiftly cleared from the target tissue, necessitating frequent dosing which may affect patient compliance. To address these limitations, we investigated the combination of nanocrystal (NC) and dissolving microneedle (MN) technologies as an alternative approach for localised and sustained intradermal delivery of MTX Na. Poorly water-soluble MTX nanocrystals (MTX NC) were produced by a bottom-up technique with a mean particle size of 678 ± 15 nm. Sustained in vitro drug release was observed over 72 h. The MTX NC were then incorporated into the shafts of dissolving MN arrays with a drug loading of 2.48 mg/array. The MTX NC-loaded MN arrays exhibited satisfactory mechanical strength and insertion capabilities in the skin-simulant Parafilm M® and their shafts dissolved entirely in less than 20 min after insertion into excised neonatal porcine skin. Importantly, in vivo studies in Sprague Dawley rats revealed that the MN arrays were able to deposit approximately 25.1% of the loaded MTX NC in the skin, which acted, in turn, as a drug depot and released the MTX in a sustained manner over 72 h, while minimising MTX systemic exposure. Indeed, 24 h from MN application, 312.70 ± 161.95 µg/g of MTX was retained in the skin at the application site. This was approximately 322-fold higher than the amount of MTX (0.942 ± 0.59 µg/g) retained in the skin after oral administration of MTX Na. Interestingly, even after 72 h after MN application, around 12.5% of the MTX NC deposited in the skin by the MN was retained. In contrast, the maximal blood concentration of MTX achieved following MN application, was only 40% of that measured after oral administration of MTX Na. Accordingly, MTX NC-loaded dissolving MN arrays could be a promising approach for effective localised and sustained intradermal delivery of MTX as a potential enhanced treatment for psoriasis.
Collapse
Affiliation(s)
- Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Taher Hatahet
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
16
|
Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm 2020; 586:119580. [DOI: 10.1016/j.ijpharm.2020.119580] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
17
|
Xu W, Wang Z, Liu Y, Wang L, Jiang Z, Li T, Zhang W, Liang Y. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 2018; 192:240-250. [DOI: 10.1016/j.carbpol.2018.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
|
18
|
Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0711-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pellé A, Pavon-Djavid G, Matricardi P. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach. ACTA ACUST UNITED AC 2017; 13:015020. [PMID: 28875946 DOI: 10.1088/1748-605x/aa8a86] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After myocardial infarction, the heart's mechanical properties and its intrinsic capability to recover are compromised. To improve this recovery, several groups have developed cardiac patches based on different biomaterials strategies. Here, we developed polyvinylalcohol/dextran (PVA/Dex) elastic hydrogel patches, obtained through the freeze thawing (FT) process, with the aim to deliver locally a potent natural antioxidant molecule, astaxanthin, and to assist the heart's response against the generated myofibril stress. Extensive rheological and dynamo-mechanical characterization of the effect of the PVA molecular weight, number of freeze-thawing cycles and Dex addition on the mechanical properties of the resulting hydrogels, were carried out. Hydrogel systems based on PVA 145 kDa and PVA 47 kDa blended with Dex 40 kDa, were chosen as the most promising candidates for this application. In order to improve astaxanthin solubility, an inclusion system using hydroxypropyl-β-cyclodextrin was prepared. This system was posteriorly loaded within the PVA/Dex hydrogels. PVA145/Dex 1FT and PVA47/Dex 3FT showed the best rheological and mechanical properties when compared to the other studied systems; environmental scanning electron microscope and confocal imaging evidenced a porous structure of the hydrogels allowing astaxanthin release. In vitro cellular behavior was analyzed after 24 h of contact with astaxanthin-loaded hydrogels. In vivo subcutaneous biocompatibility was performed in rats using PVA145/Dex 1FT, as the best compromise between mechanical support and astaxanthin delivery. Finally, ex vivo and in vivo experiments showed good mechanical and compatibility properties of this hydrogel. The obtained results showed that the studied materials have a potential to be used as myocardial patches to assist infarcted heart mechanical function and to reduce oxidative stress by the in situ release of astaxanthin.
Collapse
Affiliation(s)
- M Zuluaga
- INSERM, U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Paris 13 University, Sorbonne Paris Cite 99, Av. Jean-Baptiste Clément, F-93430 Villetaneuse, France. INSERM, U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, CHU X. Bichat, 46 rue H. Huchard, F-75018 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Laurent R, Nallet A, de Billy B, Obert L, Nicod L, Meyer C, Layrolle P, Zwetyenga N, Gindraux F. Fresh and in vitro osteodifferentiated human amniotic membrane, alone or associated with an additional scaffold, does not induce ectopic bone formation in Balb/c mice. Cell Tissue Bank 2016; 18:17-25. [PMID: 27999996 DOI: 10.1007/s10561-016-9605-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
The human amniotic membrane (hAM) has been successfully used as a natural carrier containing amniotic mesenchymal stromal cells, epithelial cells and growth factors. It has a little or no immunogenicity, and possesses useful anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. It has been used for many years in several indications for soft tissue repair. We previously reported that hAM represents a natural and preformed sheet containing highly potent stem cells, and could thus be used for bone repair. Indeed, native hAM possesses pre-osteoblastic potential that can easily be stimulated, even as far as mineralization, by means of in vitro osteogenic culture. However, cell culture induces damage to the tissue, as well as to cell phenotype and function. The aim of this study was to evaluate new bone formation by fresh and in vitro osteodifferentiated hAM, alone or associated with an additional scaffold presenting osteoinductive properties. Moreover, we also aimed to determine the effect of in vitro hAM pre-osteodifferentiation on its in vivo biocompatibility/tissue degradation. Results showed that neither fresh nor osteodifferentiated hAM induced ectopic bone formation, whether or not it was associated with the osteoinductive scaffold. Secondly, fresh and osteodifferentiated hAM presented similar in vivo tissue degradation, suggesting that in vitro hAM pre-osteodifferentiation did not influence its in vivo biocompatibility.
Collapse
Affiliation(s)
- Romain Laurent
- Paediatric Surgery Service, University Hospital of Besancon, Besançon, France
| | | | - Benoit de Billy
- Paediatric Surgery Service, University Hospital of Besancon, Besançon, France.,Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France
| | - Laurent Obert
- Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France.,Orthopaedic, Traumatology and Plastic Surgery Service, University Hospital of Besancon, Besançon, France
| | - Laurence Nicod
- Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France
| | - Christophe Meyer
- Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France.,Maxillofacial Surgery Service, University Hospital of Besancon, Besançon, France
| | - Pierre Layrolle
- Inserm U957, Laboratory for Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Narcisse Zwetyenga
- Department of Maxillofacial Surgery, Plastic - Reconstructive and Aesthetic Surgery, Hand Surgery, University Hospital of Dijon, Dijon, France
| | - Florelle Gindraux
- Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France. .,Orthopaedic, Traumatology and Plastic Surgery Service, University Hospital of Besancon, Besançon, France.
| |
Collapse
|
21
|
Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Long-term antibiofilm activity of carboxymethyl chitosan on mixed biofilm on silicone. Laryngoscope 2016; 126:E404-E408. [DOI: 10.1002/lary.26096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yulong Tan
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical University of Vienna; Vienna Austria
| | - Matthias Leonhard
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical University of Vienna; Vienna Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery; Medical University of Vienna; Vienna Austria
| | - Su Ma
- Food Biotechnology Laboratory; Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences; Vienna Austria
| | - Berit Schneider-Stickler
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical University of Vienna; Vienna Austria
| |
Collapse
|