1
|
Sun Y, Xu L, Zhang F, Song Z, Hu Y, Ji Y, Shen J, Li B, Lu H, Yang H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 2016; 89:906-912. [PMID: 27818055 DOI: 10.1016/j.bios.2016.09.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian influenza viruses infect a great number of global populations every year and can lead to severe epidemics with high morbidity and mortality. Facile, rapid and sensitive detection of viruses is very crucial to control the viral spread at its early stage. In this work, we developed a novel magnetic immunosensor based on surface enhanced Raman scattering (SERS) spectroscopy to detect intact but inactivated influenza virus H3N2 (A/Shanghai/4084T/2012) by constructing a sandwich complex consisting of SERS tags, target influenza viruses and highly SERS-active magnetic supporting substrates. The procedure of sample pretreatment could be significantly simplified since the magnetic supporting substrates allowed the enrichment and separation of viruses from a complex matrix. With a portable Raman spectrometer, the immunosensor could detect H3N2 down to 102TCID50/mL (TCID50 refers to tissue culture infection dose at 50% end point), with a good linear relationship from 102 to 5×103 TCID50/mL. Considering its time efficiency, portability and sensitivity, the proposed SERS-based magnetic immunoassay is very promising for a point-of-care (POC) test in clinical and diagnostic praxis.
Collapse
Affiliation(s)
- Yang Sun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai 200052, China; Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Li Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Fengdi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunwen Hu
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jiayin Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Li
- Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
2
|
Proteinquakes in the Evolution of Influenza Virus Hemagglutinin (A/H1N1) under Opposing Migration and Vaccination Pressures. BIOMED RESEARCH INTERNATIONAL 2015; 2015:243162. [PMID: 25654090 PMCID: PMC4309245 DOI: 10.1155/2015/243162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022]
Abstract
Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945–2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.
Collapse
|