1
|
Saratov GA, Vladimirov VI, Novoselov AL, Ziganshin RH, Chen G, Baymukhametov TN, Konevega AL, Belogurov AA, Kudriaeva AA. Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules. Int J Mol Sci 2023; 24:ijms24032091. [PMID: 36768413 PMCID: PMC9917034 DOI: 10.3390/ijms24032091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.
Collapse
Affiliation(s)
- George A. Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey L. Novoselov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Andrey L. Konevega
- National Research Center, “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre, Kurchatov Institute, 188300 Gatchina, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| |
Collapse
|
2
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|
3
|
Kudriaeva AA, Saratov GA, Kaminskaya AN, Vladimirov VI, Barzilovich PY, Belogurov AA. Polyamines Counteract Carbonate-Driven Proteasome Stalling in Alkaline Conditions. Biomolecules 2020; 10:biom10121597. [PMID: 33255475 PMCID: PMC7760842 DOI: 10.3390/biom10121597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023] Open
Abstract
Cancer cells tend to increase intracellular pH and, at the same time, are known to intensively produce and uptake polyamines such as spermine. Here, we show that various amines, including biogenic polyamines, boost the activity of proteasomes in a dose-dependent manner. Proteasome activity in the classical amine-containing buffers, such as 2-(N-morpholino)ethanesulfonic acid (MES), Tris, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), glycylglycine, bis-Tris propane, and bicine, has a skewed distribution with a maximum at pH of 7.0–8.0. The activity of proteasomes in buffers containing imidazole and bis-Tris is maintained almost on the same level, in the pH range of 6.5–8.5. The third type of activation is observed in buffers based on the amino acids arginine and ornithine, as well as the natural polyamines spermine and spermidine. Proteasome activity in these buffers is dramatically increased at pH values greater than 7.5. Anionic buffers such as phosphate or carbonate, in contrast, inhibit proteasome activity during alkalization. Importantly, supplementation of a carbonate–phosphate buffer with spermine counteracts carbonate-driven proteasome stalling in alkaline conditions, predicting an additional physiological role of polyamines in maintaining the metabolism and survival of cancer cells.
Collapse
Affiliation(s)
- Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (G.A.S.); (A.N.K.); (P.Y.B.)
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (G.A.S.); (A.N.K.); (P.Y.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Alena N. Kaminskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (G.A.S.); (A.N.K.); (P.Y.B.)
| | - Vasiliy I. Vladimirov
- Pushchino Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Petro Yu Barzilovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (G.A.S.); (A.N.K.); (P.Y.B.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (G.A.S.); (A.N.K.); (P.Y.B.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
6
|
Kudriaeva A, Galatenko VV, Maltseva DV, Khaustova NA, Kuzina E, Tonevitsky AG, Gabibov A, Belogurov A. The Transcriptome of Type I Murine Astrocytes under Interferon-Gamma Exposure and Remyelination Stimulus. Molecules 2017; 22:molecules22050808. [PMID: 28505143 PMCID: PMC6153759 DOI: 10.3390/molecules22050808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023] Open
Abstract
Astrocytes are considered to be an important contributor to central nervous system (CNS) disorders, particularly multiple sclerosis. The transcriptome of these cells is greatly affected by cytokines released by lymphocytes, penetrating the blood–brain barrier—in particular, the classical pro-inflammatory cytokine interferon-gamma (IFNγ). We report here the transcriptomal profiling of astrocytes treated using IFNγ and benztropine, a putative remyelinization agent. Our findings indicate that the expression of genes involved in antigen processing and presentation in astrocytes are significantly upregulated upon IFNγ exposure, emphasizing the critical role of this cytokine in the redirection of immune response towards self-antigens. Data reported herein support previous observations that the IFNγ-induced JAK-STAT signaling pathway may be regarded as a valuable target for pharmaceutical interventions.
Collapse
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | - Vladimir V Galatenko
- Department of Mathematical Analysis, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- SRC Bioclinicum, 115088 Moscow, Russia.
| | | | | | - Ekaterina Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
7
|
Kuzina ES, Kudriaeva AA, Glagoleva IS, Knorre VD, Gabibov AG, Belogurov AA. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism. DOKL BIOCHEM BIOPHYS 2016; 469:277-80. [PMID: 27599511 DOI: 10.1134/s1607672916040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 01/23/2023]
Abstract
Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes.
Collapse
Affiliation(s)
- E S Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - I S Glagoleva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Karla Marksa 74, Kazan, 420055 Tatarstan, Russia
| | - V D Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - A G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Karla Marksa 74, Kazan, 420055 Tatarstan, Russia.,Faculty of Chemistry, Moscow State University, Moscow, 119991, Russia
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Karla Marksa 74, Kazan, 420055 Tatarstan, Russia.,Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| |
Collapse
|
8
|
Molecular mechanisms of growth and progression of malignant neoplasms. Mol Biol 2015. [DOI: 10.1134/s0026893315050179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zavalishin IA, Belogurov AA, Lomakin YA, Ponomarenko NA, Morozova SN, Suslina ZA, Piradov MA, Illarioshkin SN, Gabibov AG. Clinical and experimental studies of multiple sclerosis in Russia: experience of the leading national research centers. Degener Neurol Neuromuscul Dis 2015; 5:83-90. [PMID: 32669915 PMCID: PMC7337142 DOI: 10.2147/dnnd.s46023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 12/04/2022] Open
Abstract
Mechanisms of axonal damage and adaptive capacity in multiple sclerosis (MS), including cortical reorganization, have been actively studied in recent years. The lack of regenerative capabilities and the irreversibility of neurodegeneration in MS are critical factors for the optimization of MS treatment. In this study, we present the results of clinical and basic studies in the field of MS by two leading Russian centers. Clinical and neuroimaging correlations show that spinal damage in MS is accompanied by functional reorganization of the cerebral cortex, which is determined not only by the efferent component but also by the afferent component. Comparative analysis of MS treatment with both interferon β1b (IFN-β1b) and IFN-β1a at a dosage of 22 µg for 3 years through subcutaneous administration and glatiramer acetate showed equally high efficiency in reducing the number of exacerbations in relapsing-remitting MS and secondary-progressive MS. We demonstrate a reduced risk of disability in relapsing-remitting MS and secondary-progressive MS patients in all groups treated with IFN-β1 and glatiramer acetate. MS appears to be a disease that would greatly benefit from the development of personalized therapy; thus, adequate molecular predictors of myelin degradation are greatly needed. Therefore, novel ideas related to the viral hypothesis of the etiology of MS and new targets for therapeutic intervention are currently being developed. In this manuscript, we discuss findings of both clinical practice and fundamental research reflecting challenges and future directions of MS treatment in the Russian Federation.
Collapse
Affiliation(s)
| | - Alexey A Belogurov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.,Institute of Gene Biology, RAS
| | - Yakov A Lomakin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | - Alexander G Gabibov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.,Chemistry Department, Moscow State University, Moscow, Russia
| |
Collapse
|