1
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
Xu SQ, Du YN, Zhang ZJ, Yan JN, Sun JJ, Zhang LC, Wang C, Lai B, Wu HT. Gel properties and interactions of hydrogels constructed with low acyl gellan gum and puerarin. Carbohydr Polym 2024; 326:121594. [PMID: 38142069 DOI: 10.1016/j.carbpol.2023.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
To develop composite hydrogels based on low acyl gellan gum (GG), the effect of puerarin (PUE) on the gel properties of GG was investigated. The results showed that the maximum storage modulus (G') of the 1.2 % GG/0.8 % PUE composite hydrogel was 377.4 Pa at 0.1 Hz, which was enhanced by 4.7-fold compared with that of 1.2 % GG. The melting temperature of this composite hydrogel increased from 74.1 °C to >80.0 °C. LF-NMR results showed that a significant amount of free water was present in the hydrogel matrix. The surface structure aggregation and the shrinkage of the honeycomb meshes in the composite hydrogel proved the cross-linking of PUE and GG. XRD, FTIR and molecular simulation results illustrated that hydrogen bonds were the most important factor controlling the interaction between GG and PUE. Thus, the GG/PUE composite hydrogel has good elasticity, thermal stability and water retention, which lays a good foundation for further application in the food industry.
Collapse
Affiliation(s)
- Shi-Qi Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Nan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhu-Jun Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jin-Jian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
4
|
Ouattar H, Zouirech O, Kara M, Assouguem A, Almutairi SM, Al-Hemaid FM, Rasheed RA, Ullah R, Abbasi AM, Aouane M, Mikou K. In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds. Molecules 2022; 27:5946. [PMID: 36144678 PMCID: PMC9505328 DOI: 10.3390/molecules27185946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Moroccan flora abounds and is an important reserve of medicinal plants. Nigella sativa and Lepidium sativum are plants that are widely used in traditional medicine for their multiple therapeutic properties. The current study aims to highlight the biological activities that can justify and valorize the use of these plants. Flavonoids, total phenols, condensed tannins, and sugars were determined. The biological activities tested were antioxidant by determining the IC50 (defined as the concentration of an antioxidant required to decrease the initial concentration by 50%; inversely related to the antioxidant capacity), hemagglutination, and hemolytic activities. Phytochemical quantification of the seed extracts indicated that the total phenol content was largely similar for both plants and in the order of 10 mg GAE (Gallic acid equivalent)/g. On the other hand, L. sativum seeds registered a higher content of flavonoids (3.09 ± 0.04 mg QE (quercetin equivalent)/g) as compared to Nigella saliva (0.258 ± 0.058). Concerning condensed tannins, N. saliva seeds present a higher amount with a value of 7.2 ± 0.025 mg/g as compared to L. sativum (1.4 ± 0.22 mg/g). Concerning the total sugar content, L. sativum shows a higher content (67.86 ± 0.87 mg/g) as compared to N. sativa (58.17 ± 0.42 mg/g); it is also richer in mucilage with a content of 240 mg as compared to 8.2 mg for N. saliva. Examination of the antioxidant activity using a DPPH (2.2-diphenyl 1-pycrilhydrazyl) test revealed that the EButOH (n-butanol extract) and EAE (ethyl acetate extract) extracts were the most active, with IC50 values of 48.7 and 50.65 μg/mL for the N. sativa extracts and 15.7 and 52.64 μg/mL for the L. sativum extracts, respectively. The results of the hemagglutination activity of the different extracts of the two plants prepared in the PBS (phosphate-buffered saline) medium showed significant agglutination for the L. sativum extract (1/50) compared to the N. sativa extract (1/20). An evaluation of the hemolytic effect of the crude extract of the studied seeds on erythrocytes isolated from rat blood incubated in PBS buffer compared to the total hemolysis induced by distilled water showed a hemolysis rate of 54% for Nigella sativa and 34% for L. sativum. In conclusion, the two plants studied in the current work exhibited high antioxidant potential, which could explain their beneficial properties.
Collapse
Affiliation(s)
- Hafssa Ouattar
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Otmane Zouirech
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 3000, Fez 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M. Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology and Cell Biology Department, Faculty of Medicine, King Salman International University, El Tor 46612, Egypt
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan or
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy
| | - Mahjoub Aouane
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Karima Mikou
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| |
Collapse
|
5
|
Malva parviflora Leaves and Fruits Mucilage as Natural Sources of Anti-Inflammatory, Antitussive and Gastro-Protective Agents: A Comparative Study Using Rat Models and Gas Chromatography. Pharmaceuticals (Basel) 2022; 15:ph15040427. [PMID: 35455424 PMCID: PMC9030788 DOI: 10.3390/ph15040427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malva parviflora L., Little mallow, has been traditionally used as an alternative food source. It acts as a medicinal herb containing a potential source of mucilage thus herein; we aimed to assess the toxicity, anti-inflammatory, antitussive and gastro-protective actions of M. parviflora mucilage extracted from its leaves (MLM) and fruit (MFM). Toxicity studies were investigated by in vitro hemolytic assay whereas acute anti-inflammatory and antitussive activities were assessed by carrageenan-induced paw edema and sulphur dioxide induced cough model in rats, respectively. Gastro-protective effects were studied using ethanol induced acute and chronic gastric ulcer rat models. Their metabolic profiles were determined using gas chromatography. The results revealed that MLM and MFM were non-toxic towards human erythrocytes and their lethal doses were found to be greater than 5 g/kg. Pretreatment with MLM (500 mg/kg) and MFM (500 mg/kg) significantly reduced the carrageenan-induced paw thickness (p < 0.001). Maximum edema inhibition (%) was observed at 4 h in diclofenac sodium (39.31%) followed by MLM (27.35%) and MFM (15.68%). Animals pretreated with MLM (500 mg/kg) significantly lower the cough frequency in SO2 gas induced cough models in contrast to control. Moreover, MLM at doses of 250 and 500 mg/kg reduced the ethanol induced gastric mucosal injuries in acute gastric ulcer models presenting ulcer inhibition of 23.04 and 38.74%, respectively. The chronic gastric ulcer model MFM (500 mg/kg) demonstrated a remarkable gastro-protective effect showing 63.52% ulcer inhibition and results were closely related to standard drug sucralfate. In both models, MLM and MFM decreased gastric juice volume and total acidity in addition to an increased gastric juice pH and gastric mucous content justifying an anti-secretary role of this mucilage that was further confirmed by histopathological examination. Meanwhile, GC analyses of the mucilage revealed their richness with natural as well as acidic monosaccharides. It is concluded that MLM and MFM can be used therapeutically for the management of inflammation, cough and gastric ulcer.
Collapse
|
6
|
Draksiene G, Venclovaite B, Pudziuvelyte L, Ivanauskas L, Marksa M, Bernatoniene J. Natural Polymer Chitosan as Super Disintegrant in Fast Orally Disintegrating Meloxicam Tablets: Formulation and Evaluation. Pharmaceutics 2021; 13:pharmaceutics13060879. [PMID: 34203634 PMCID: PMC8232328 DOI: 10.3390/pharmaceutics13060879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present investigation was to formulate fast disintegrating tablets of meloxicam by wet granulation technique using medium molecular weight chitosan. The orally disintegrating tablets of meloxicam with chitosan showed good mechanical and disintegration properties and good dissolution rate when prepared in tablet press using 10.8 kN and 11.0 kN compression force. Chitosan is a suitable biopolymer to moderate the disintegration process in orally disintegrating tablets.
Collapse
Affiliation(s)
- Gailute Draksiene
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Brigita Venclovaite
- Department of Clinical Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Lauryna Pudziuvelyte
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
7
|
Waghmare R, R P, Moses JA, Anandharamakrishnan C. Mucilages: sources, extraction methods, and characteristics for their use as encapsulation agents. Crit Rev Food Sci Nutr 2021; 62:4186-4207. [PMID: 33480265 DOI: 10.1080/10408398.2021.1873730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Collapse
Affiliation(s)
- Roji Waghmare
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Preethi R
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
8
|
Pérez-López AM, Rubio-Ruiz B, Valero T, Contreras-Montoya R, Álvarez de Cienfuegos L, Sebastián V, Santamaría J, Unciti-Broceta A. Bioorthogonal Uncaging of Cytotoxic Paclitaxel through Pd Nanosheet-Hydrogel Frameworks. J Med Chem 2020; 63:9650-9659. [PMID: 32787091 PMCID: PMC7497487 DOI: 10.1021/acs.jmedchem.0c00781] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/21/2022]
Abstract
The promising potential of bioorthogonal catalysis in biomedicine is inspiring incremental efforts to design strategies that regulate drug activity in living systems. To achieve this, it is not only essential to develop customized inactive prodrugs and biocompatible metal catalysts but also the right physical environment for them to interact and enable drug production under spatial and/or temporal control. Toward this goal, here, we report the first inactive precursor of the potent broad-spectrum anticancer drug paclitaxel (a.k.a. Taxol) that is stable in cell culture and labile to Pd catalysts. This new prodrug is effectively uncaged in cancer cell culture by Pd nanosheets captured within agarose and alginate hydrogels, providing a biodegradable catalytic framework to achieve controlled release of one of the most important chemotherapy drugs in medical practice. The compatibility of bioorthogonal catalysis and physical hydrogels opens up new opportunities to administer and modulate the mobility of transition metal catalysts in living environs.
Collapse
Affiliation(s)
- Ana M. Pérez-López
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Belén Rubio-Ruiz
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Teresa Valero
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Rafael Contreras-Montoya
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18002, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18002, Spain
| | - Víctor Sebastián
- Department
of Chemical Engineering and Environmental Technology; Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Jesús Santamaría
- Department
of Chemical Engineering and Environmental Technology; Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Asier Unciti-Broceta
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
9
|
Pravilović RN, Balanč BD, Djordjević VB, Bošković‐Vragolović NM, Bugarski BM, Pjanović RV. Diffusion of polyphenols from alginate, alginate/chitosan, and alginate/inulin particles. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Radoslava N. Pravilović
- Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | - Bojana D. Balanč
- Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | - Verica B. Djordjević
- Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | - Branko M. Bugarski
- Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | - Rada V. Pjanović
- Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
10
|
Chitosan-Based Mucoadhesive Vaginal Tablets for Controlled Release of the Anti-HIV Drug Tenofovir. Pharmaceutics 2019; 11:pharmaceutics11010020. [PMID: 30621307 PMCID: PMC6359514 DOI: 10.3390/pharmaceutics11010020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
Vaginal microbicides have the potential to give women at high risk of contracting HIV the option of self-protection by preventing the sexual transmission of the virus. In this paper, mucoadhesive vaginal tablets based on chitosan, alone and in combination with pectin and locust bean gum, were developed for the sustained release of tenofovir (an antiretroviral drug). The formulations were placed in simulant vaginal fluid (SVF) to swell, and Hg porosity and SEM microscopy were used for the microstructural characterization of the swelling witnesses. The results show that the association of pectin and chitosan generated polyelectrolyte complexes and produced a robust system able to maintain its structure during the swelling process, when small pores are formed. Drug release and bovine vaginal mucoadhesion studies were performed in SVF showing that tenofovir-controlled dissolution profiles and adhesion to the mucosa were conditioned by the swelling processes of the polymer/s in each formulation. Tablets based on chitosan/pectin have the most homogeneous tenofovir dissolution profiles and last up to 96 h, remaining attached to the vaginal mucosa for the same period. These formulations can therefore be considered a good option for the self-protection of women from the sexual transmission of HIV.
Collapse
|
11
|
Gafri HFS, Mohamed Zuki F, Aroua MK, Hashim NA. Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC). REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Bacterial adhesion to surfaces is related to several factors, such as surface charge, surface energy, and substrate characteristics (leading to the formation of biofilms). Organisms are dominant in most environmental, industrial, and medical problems and processes that are of interest to microbiologists. Biofilm cells are at least 500 times more resistant to antibacterial agents compared to planktonic cells. The usage of ultrafiltration membranes is fast becoming popular for water treatment. Membrane lifetime and permeate flux are primarily affected by the phenomena of microbial accumulation and fouling at the membrane’s surface. This review intends to understand the mechanism of membrane fouling by bacterial attachment on polymeric ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) combined with powder activated carbon. Also, to guide future research on membrane water treatment processes, adhesion prediction using the extended Derjaguin-Landau-Verwey-Overbeek theory is discussed.
Collapse
Affiliation(s)
- Hasan Fouzi S. Gafri
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology , Sunway University, Bandar Sunway , 47500 Petaling Jaya , Malaysia
- Department of Engineering , Lancaster University , Lancaster, LA1 4YW , UK
| | - Nur Awanis Hashim
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
12
|
Fathi M, Kazemi S, Zahedi F, Shiran MR, Moghadamnia AA. Comparison of oral bioavailability of acetaminophen tablets, capsules and effervescent dosage forms in healthy volunteers. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2018. [DOI: 10.1515/cipms-2018-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
A wide variety of acetaminophen dosage forms have been administered to relieve mild to moderate pain and fever, so far. The purpose of this study was to compare the oral bioavailability in healthy volunteers, of three of these dosage forms. We included healthy volunteers in our study and divided replace with placed them into three groups: tablet, capsule and effervescent. Each dosage form contained 500 mg of acetaminophen as active material. Blood samples were taken at 0.5, 1, 2, 4 and 8-hour intervals after receiving the dose. Acetaminophen blood levels were measured using HPLC method. Data were fit in a “one-compartment PK model”, using P-Pharm 1.5 software and analyzed under statistical tests. The maximum concentrations of acetaminophen in blood samples were measured at 1h after taking the drug (6.61±3.19 μg/ml, 11.29±3.94 μg/ml and 15.25±2.54 μg/ml in groups receiving capsule, tablet and effervescent, respectively). Pharmacokinetic (PK) data analysis & modeling from the three groups showed that the half-life of acetaminophen was 140.72 min in the tablet group, 140.29 min in capsule and 132.08 min in effervescent. The area under the blood levels curve were 47.04, 40.62 and 53.11 μgmin/ml, in tablet, capsule, and effervescent groups, respectively. Statistically significant differences in PK parameters were recorded as the study replace with we compared effervescent with tablets and capsule dosage forms (p < 0.05). According to the results, the effervescent form creates better PK parameters compared with tablet and capsule forms, therefore, it is suggested replace with we suggested that this form should be administer in cases of pain and fever to achieve quick drug efficacy.
Collapse
Affiliation(s)
- Mona Fathi
- Neuroscience Research Center, Health Research Institute , Babol University of Medical Sciences , Babol , Iran
| | - Sohrab Kazemi
- Neuroscience Research Center, Health Research Institute , Babol University of Medical Sciences , Babol , Iran
- Cellular and Molecular biology research centre, health research institute , Babol University of Medical Sciences , Babol , Iran
| | - Farbod Zahedi
- Department of Pharmacology , Babol University of Medical Sciences , Babol , Iran
| | - Mohamad Reza Shiran
- Department of Pharmacology , Mazandaran University of Medical Science , Sari , Iran
| | - Ali Akbar Moghadamnia
- Neuroscience Research Center, Health Research Institute , Babol University of Medical Sciences , Babol , Iran
- Cellular and Molecular biology research centre, health research institute , Babol University of Medical Sciences , Babol , Iran
| |
Collapse
|
13
|
Optimization of orodispersible and conventional tablets using simplex lattice design: Relationship among excipients and banana extract. Carbohydr Polym 2018; 193:89-98. [PMID: 29773401 DOI: 10.1016/j.carbpol.2018.03.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/28/2023]
Abstract
The objective of this study was focused on the optimization of the pharmaceutical excipients and banana extract in the preparation of orally disintegrating banana extract tablets (OD-BET) and conventional banana extract tablets (CO-BET) using a simplex lattice design. Various ratios of banana extract (BE), dibasic calcium phosphate (DCP) and microcrystalline cellulose (MCC) were used to prepare banana extract tablets (BET). The results indicated that the optimal OD-BET and CO-BET consisted of BE: DCP: MCC at 10.0, 88.8, 1.2, 10.0, 83.8: and 6.2, respectively. AFM demonstrated that the surface of BET with BE + MCC was smooth and compacted when compared to BET with BE + DCP + MCC and BE + DCP. FTIR and XRD showed a correlation in the results and indicated that no interaction of each ingredient occurred in the process of BET formulation. Therefore, the experimental design is potentially useful in formulated OD-BET and CO-BET by using only one design simultaneously.
Collapse
|