1
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
2
|
ZHOU QH, ZHU YD, ZHANG F, SONG YQ, JIA SN, ZHU L, FANG SQ, GE GB. Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus. Chin J Nat Med 2019; 17:858-870. [DOI: 10.1016/s1875-5364(19)30103-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/13/2022]
|
3
|
Shi X, Zhang G, Ge G, Guo Z, Song Y, Su D, Shan L. In Vitro Metabolism of Auriculasin and Its Inhibitory Effects on Human Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem Res Toxicol 2019; 32:2125-2134. [PMID: 31515991 DOI: 10.1021/acs.chemrestox.9b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Auriculasin has a wide range of pharmacological effects, including anticancer and anti-inflammatory effects. In this work, we explored the metabolic characteristics and inhibitory effect of auriculasin against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes in vitro. Auriculasin inhibited UGT1A6, UGT1A8, UGT1A10, UGT2B7, CYP2C9, and CYP3A4 strongly at a concentration of 100 μM. Different species showed significant differences in auriculasin metabolism, and metabolic characteristics were similar between pig and human. We identified seven metabolites, and hydroxylated auriculasin was the main metabolite. In addition, CYP2D6, CYP2C9, CYP2C19, and CYP2C8 were the major CYP isoforms involved in the metabolism of auriculasin. Molecular docking studies showed that noncovalent interactions between auriculasin and the CYPs are dominated by hydrogen bonding, π-π stacking, and hydrophobic interactions. Our in vitro study provides insights into the pharmacological and toxicological mechanisms of auriculasin.
Collapse
Affiliation(s)
- Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University , Jinzhou 121001 , China
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100000 , China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University , Jinzhou 121001 , China
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine , 1688 Meiling Road , Nanchang 330006 , China
| | - Dan Su
- Jiangxi University of Traditional Chinese Medicine , 1688 Meiling Road , Nanchang 330006 , China
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University , Jinzhou 121001 , China
| |
Collapse
|
4
|
Zhang Z, Liu D, Jiang J, Song X, Zou X, Chu S, Xie K, Dai J, Chen N, Sheng L, Li Y. Metabolism of IMM-H004 and Its Pharmacokinetic-Pharmacodynamic Analysis in Cerebral Ischemia/Reperfusion Injured Rats. Front Pharmacol 2019; 10:631. [PMID: 31249524 PMCID: PMC6584114 DOI: 10.3389/fphar.2019.00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
IMM-H004, a derivative of coumarin, is a promising candidate for the treatment of cerebral ischemia. The pharmacodynamic mechanisms of IMM-H004 are still under exploration. The present study was conducted to explore the pharmacoactive substances of IMM-H004 from the perspective of drug metabolism. Four metabolites of IMM-H004 including demethylated metabolites M1 and M2, glucuronide conjugate IMM-H004G (M3), and sulfated conjugate M4 were found in rats in vivo. IMM-H004G was the major metabolite in rats and cultured human hepatocytes, and uridine diphosphate-glucuronosyltransferase (UGT) was found to catalyze the metabolism of IMM-H004 in human liver microsomes (HLMs) and rat liver microsomes (RLMs) with high capacity (V max at 3.25 and 5.04 nmol/min/mg protein). Among 13 recombinant human UGT isoforms, UGT1A7, 1A9, 1A8, and 1A1 appeared to be primarily responsible for IMM-H004G formation. The exposure and duration of IMM-H004G (28,948 h × ng/ml of area under the plasma concentration-time curve (AUC), 6.61 h of t 1/2β) was much higher than that of the parent drug (1,638 h × ng/ml of AUC, 0.42 h of t 1/2β) in transient middle cerebral artery occlusion/reperfusion (MCAO/R) rats, consistent with the malondialdehyde (MDA) inhibition effect for at least 10 h. Further pharmacological study revealed that IMM-H004G exhibited a similar neuroprotective activity to that of the parent drug on both oxygen-glucose deprivation injured PC12 cells and transient MCAO/R injured rats. These results demonstrate that both prototype and IMM-H004G are the active pharmaceutical substances, and IMM-H004G, at least in part, contributes to the maintenance of anti-cerebral ischemia efficacy of IMM-H004.
Collapse
Affiliation(s)
- Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Liu
- State Key Laboratory of Bioactive Substances and Function Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substances and Function Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuyun Song
- State Key Laboratory of Bioactive Substances and Function Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowen Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Function Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Function Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Koul B, Taak P, Kumar A, Kumar A, Sanyal I. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:201-226. [PMID: 30521980 PMCID: PMC7127090 DOI: 10.1016/j.jep.2018.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Psoralea (Fabaceae) harbours 105 accepted species that are extensively used by local peoples and medicinal practitioners of China, India, and other countries for treatment of tooth decay, psoriasis, leucoderma, leprosy, kidney problems, tuberculosis, indigestion, constipation and impotence. Presently, pharmacological research reports are available on only few species namely Bituminaria bituminosa (Syn: P. bituminosa), P. canescens, P. corylifolia, P. esculenta, P. plicata and P. glandulosa which are valued for their chemical constituents and traditional uses. AIM OF THE REVIEW This review article provides explicit information on traditional uses, phytochemistry, and pharmacological activities of selected Psoralea species. The possible trends and perspectives for future research on these plants are also discussed. MATERIALS AND METHODS An extensive and systematic review of the extant literature was carried out, and the data under various sections were identified using a computerized bibliographic search via the PubMed, Web of Science and Google Scholar, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS as well as several websites. KEY FINDINGS A total of 291 bioactive compounds from 06 species of genus Psoralea have been isolated and characterized. However, P. bituminosa alone possess nearly 150 compounds. These bioactive compounds belong to different chemical classes, including flavonoids, coumarins, furanocoumarins, chalcones, quinines, terpenoids and some others due to which these species exhibit significant anti-oxidant, anti-bacterial, anti-fungal, anti-viral, anti-helmintic, anti-diabetic, diuretic, hepatoprotective, anti-cancer and anti-tumor activities. P. corylifolia L. (Babchi), a Chinese traditional medicinal plant has been used in traditional medicine for many decades for its healing properties against numerous skin diseases such as leprosy, psoriasis and leucoderma. CONCLUSIONS The in vitro studies and in vivo models have provided a simple bio-scientific justification for various ethnopharmacological uses of Psoralea species. From the toxicological perspective, the root, leaf, and seed extracts and their preparations have been proven to be safe when consumed in the recommended doses. But, meticulous studies on the pharmaceutical standardization, mode of action of the active constituents, and sustainable conservation of Psoralea species are needed, to meet the growing demands of the pharmaceutical industries, and to fully exploit their preventive and therapeutic potentials.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara , Punjab 144411, India.
| | - Pooja Taak
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara , Punjab 144411, India
| | - Arvind Kumar
- Chromatography and Mass Spectrometry Centre, CROM-MASS, CENIVAM, Industrial University of Santander, Carrera 27, Calle 9, Edificio 45, Bucaramanga, Colombia.
| | - Anil Kumar
- CSIR-National Botanical Research Institute, Plant Transgenic Laboratory, P.O. Box 436, Rana Pratap Marg, Lucknow 226001, U.P., India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Plant Transgenic Laboratory, P.O. Box 436, Rana Pratap Marg, Lucknow 226001, U.P., India.
| |
Collapse
|
6
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
7
|
Alam F, Khan GN, Asad MHHB. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review. Phytother Res 2018; 32:597-615. [PMID: 29243333 PMCID: PMC7167735 DOI: 10.1002/ptr.6006] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Psoralea corylifolia L. (Leguminosae) is a well-known traditional medicinal plant used from ancient times for treatment of various ailments. It is widely distributed and an important part of therapeutics in Ayurveda and in Chinese medicines. The aim of this review is to present comprehensive and most up to date report on its ethnobotanical, ethnopharmacological, clinical, phytochemical, and side effects. Studies on the ethnobotanical, ethnopharmacological, clinical, phytochemical, and side effects of P. corylifolia were published until year 2017 and were searched using various scientific databases. The scientific literature searched revealed that these plant species has been extensively investigated in vivo and in vitro for various biological and phytochemical studies. It has cardiotonic, vasodilator, pigmentor, antitumor, antibacterial, cytotoxic, and anti-helminthic properties and locally used for alopecia, inflammation, leukoderma, leprosy, psoriasis, and eczema. So far, about a hundred bioactive compounds have been isolated from seeds and fruits, and most important compounds identified belongs to coumarins, flavonoids, and meroterpenes groups. This review article summarized the most updated scientific literature on bioactive phytochemical and biological activities of P. corylifolia. This article will be a useful addition to providing information for future research, and more standard clinical trials are needed for the plant to be used as therapeutic agent.
Collapse
Affiliation(s)
- Fiaz Alam
- Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabad22060Pakistan
| | - Gul Nawaz Khan
- Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabad22060Pakistan
| | | |
Collapse
|
8
|
Qu W, Liu X. Identification of cytochrome P450 isoforms involved in the metabolism of artocarpin and assessment of its drug-drug interaction. Biomed Chromatogr 2018; 32. [DOI: 10.1002/bmc.4149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Qu
- Guangxi Medical University; Nanning China
| | | |
Collapse
|
9
|
Zhou D, An L, Xia Y, Wang Y, Li X. Quantitative bioanalysis of bavachalcone in rat plasma by LC-MS/MS and its application in a pharmacokinetics study. Biomed Chromatogr 2017; 31. [PMID: 28618051 DOI: 10.1002/bmc.4031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 11/12/2022]
Abstract
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid-liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)-water (B) (70:30, v/v). The detection and quantification of analytes was performed in selected-reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1-1000 ng/mL for bavachalcone (r2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, China
| | - Lianhua An
- Department of Science and Education, the First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology, the First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine, the First Hospital of Jilin University, Changchun, China
| | - Xingliang Li
- Department of Emergency, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Phytochemical and Pharmacological Studies on the Genus Psoralea: A Mini Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8108643. [PMID: 27956922 PMCID: PMC5124476 DOI: 10.1155/2016/8108643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022]
Abstract
The genus Psoralea, which belongs to the family Fabaceae, comprises ca. 130 species distributed all over the world, and some of the plants are used as folk medicine to treat various diseases. Psoralea corylifolia is a typical example, whose seeds have been widely used in many traditional Chinese medicine formulas for the treatment of various diseases such as leucoderma and other skin diseases, cardiovascular diseases, nephritis, osteoporosis, and cancer. So, the chemical and pharmacological studies on this genus were performed in the past decades. Here, we give a mini review on this genus about its phytochemical and pharmacological studies from 1910 to 2015.
Collapse
|
11
|
Metabolism and Metabolic Inhibition of Xanthotoxol in Human Liver Microsomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5416509. [PMID: 27034690 PMCID: PMC4806279 DOI: 10.1155/2016/5416509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450 isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes. CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC50 of 7.43 μM for CYP3A4 and 27.82 μM for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15 μM and 2.22 μM for CYP1A2 and CYP3A4, respectively. The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and Vmax, Km, and CLint values were calculated as 0.55 nmol·min−1·mg−1, 8.46 μM, and 0.06 mL·min−1·mg−1. In addition, the results of molecular docking showed that xanthotoxol was bound to CYP1A2 with hydrophobic and π-π bond and CYP3A4 with hydrogen and hydrophobic bond. We predicted the hepatic clearance (CLH) and the CLH value was 15.91 mL·min−1·kg−1 body weight. These data were significant for the application of xanthotoxol and xanthotoxol-containing herbs.
Collapse
|
12
|
Shi X, Yang S, Zhang G, Song Y, Su D, Liu Y, Guo F, Shan L, Cai J. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes. Xenobiotica 2015; 46:467-76. [PMID: 26372370 DOI: 10.3109/00498254.2015.1086839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes. 2. 100 μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00 μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11 μM, respectively. 3. Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83 μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75 nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey > rat > minipig > dog > human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12 mL/min/kg body weight, respectively. 4. This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.
Collapse
Affiliation(s)
- Xianbao Shi
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China .,b Department of Pharmacy , The First Affiliated Hospital of Liaoning Medical University , Jinzhou , China
| | - Shuman Yang
- c Department of Internal Medicine/Community Health Sciences , University of Manitoba , Winnipeg , Manitoba , Canada
| | - Gang Zhang
- d Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA , and
| | - Yonggui Song
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Dan Su
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Yali Liu
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Feng Guo
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China
| | - Lina Shan
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China .,b Department of Pharmacy , The First Affiliated Hospital of Liaoning Medical University , Jinzhou , China
| | - Jiqun Cai
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China
| |
Collapse
|
13
|
Bavachalcone Enhances RORα Expression, Controls Bmal1 Circadian Transcription, and Depresses Cellular Senescence in Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199639 PMCID: PMC4493309 DOI: 10.1155/2015/920431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The circadian clock regulates many aspects of (patho)physiology in the central nervous system and in the peripheral tissues. RAR-related orphan receptor α (RORα), an orphan nuclear receptor, is involved in circadian rhythm regulation, including regulation of cardiovascular function. Bavachalcone, a prenylchalcone, is a major bioactive chalcone isolated from Psoralea corylifolia. This natural ingredient activated RORα1 luciferase reporter activity on drug screening. In addition, bavachalcone induced RORα1 expression in mRNA and protein levels in a dose-dependent manner and enhanced the circadian amplitude of Bmal1 mRNA expression after serum shock. Moreover, bavachalcone suppressed senescence in human endothelial cells and mRNA expression of p16(ink4a) (a marker of replicative senescence) and IL-1α (a proinflammatory cytokine of the senescence-associated secretory phenotype). These inhibitory effects were partially reversed by the RORα inhibitor VPR-66. Our results demonstrate that bavachalcone, as a natural medicine ingredient, has a pharmacological function in regulating RORα1.
Collapse
|
14
|
Dang Y, Ling S, Duan J, Ma J, Ni R, Xu JW. Bavachalcone-Induced Manganese Superoxide Dismutase Expression through the AMP-Activated Protein Kinase Pathway in Human Endothelial Cells. Pharmacology 2015; 95:105-10. [DOI: 10.1159/000375452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022]
|