1
|
Savioli M, Antonelli L, Bocchinfuso G, Cavalieri F, Cimino R, Gatto E, Placidi E, Fernandez Masso JR, Garay Perez H, Santana H, Guerra-Vallespi M, Venanzi M. Formulation matters! A spectroscopic and molecular dynamics investigation on the peptide CIGB552 as itself and in its therapeutical formulation. J Pept Sci 2021; 28:e3356. [PMID: 34114297 DOI: 10.1002/psc.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
Synthetic therapeutic peptides (STP) are intensively studied as new-generation drugs, characterized by high purity, biocompatibility, selectivity and stereochemical control. However, most of the studies are focussed on the bioactivity of STP without considering how the formulation actually used for therapy administration could alter the physico-chemical properties of the active principle. The aggregation properties of a 20-mer STP (Ac-His-Ala-Arg-Ile-Lys-D-Pro-Thr-Phe-Arg-Arg-D-Leu-Lys-Trp-Lys-Tyr-Lys-Gly-Lys-Phe-Trp-NH2 ), showing antitumor activity, were investigated by optical spectroscopy and atomic force microscopy imaging, as itself (CIGB552) and in its therapeutic formulation (CIGB552TF). It has found that the therapeutic formulation deeply affects the aggregation properties of the investigated peptide and the morphology of the aggregates formed on mica by deposition of CIGB552 and CIGB552TF millimolar solutions. Molecular dynamics simulations studied the first steps of CIGB552 aggregation under physiological ionic strength conditions (NaCl 150 mM), showing that peptide oligomers, from dimers to tetramers, are preferentially formed in this environment. Interestingly, cell viability assays performed on H-460 cell lines indicate a major antiproliferative activity of the peptide in its therapeutic formulation with respect to the peptide aqueous solution.
Collapse
Affiliation(s)
- Marco Savioli
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Antonelli
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Bocchinfuso
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Cavalieri
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy.,School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Rita Cimino
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Gatto
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Ernesto Placidi
- Department of Physics, University of Rome 'Sapienza', Rome, Italy
| | | | | | - Hector Santana
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Mariano Venanzi
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Vallespi MG, Mestre B, Marrero MA, Uranga R, Rey D, Lugiollo M, Betancourt M, Silva K, Corrales D, Lamadrid Y, Rodriguez Y, Maceo A, Chaviano PP, Lemos G, Cabrales A, Freyre FM, Santana H, Garay HE, Oliva B, Fernandez JR. A first-in-class, first-in-human, phase I trial of CIGB-552, a synthetic peptide targeting COMMD1 to inhibit the oncogenic activity of NF-κB in patients with advanced solid tumors. Int J Cancer 2021; 149:1313-1321. [PMID: 34019700 DOI: 10.1002/ijc.33695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.
Collapse
Affiliation(s)
| | - Braulio Mestre
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Maria A Marrero
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Rolando Uranga
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Diana Rey
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Martha Lugiollo
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Mircea Betancourt
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Kirenia Silva
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Danay Corrales
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yanet Lamadrid
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yamilka Rodriguez
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Anaelys Maceo
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Pedro P Chaviano
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Gilda Lemos
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Freya M Freyre
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hector Santana
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hilda E Garay
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Brizaida Oliva
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Julio R Fernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
3
|
Oliva Arguelles B, Riera-Romo M, Guerra Vallespi M. Antitumour peptide based on a protein derived from the horseshoe crab: CIGB-552 a promising candidate for cancer therapy. Br J Pharmacol 2020; 177:3625-3634. [PMID: 32436254 DOI: 10.1111/bph.15132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
Peptide-based cancer therapy has been of great interest due to the unique advantages of peptides, such as their low MW, the ability to specifically target tumour cells, easily available and low toxicity in normal tissues. Therefore, identifying and synthesizing novel peptides could provide a promising option for cancer patients. The antitumour second generation peptide, CIGB-552 has been developed as a candidate for cancer therapy. Proteomic and genomic studies have identified the intracellular protein COMMD1 as the specific target of CIGB-552. This peptide penetrates to the inside tumour cells to induce the proteasomal degradation of RelA, causing the termination of NF-κB signalling. The antitumour activity of CIGB-552 has been validated in vitro in different human cancer cell lines, as well as in vivo in syngeneic and xenograft tumour mouse models and in dogs with different types of cancers. The aim of this review is to present and discuss the experimental data obtained on the action of CIGB-552, including its mechanism of action and its therapeutic potential in human chronic diseases. This peptide is already in phase I clinical trials as antineoplastic drug and has also possible application for other inflammatory and metabolic conditions.
Collapse
Affiliation(s)
- Brizaida Oliva Arguelles
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Riera-Romo
- Pharmacology Department, Institute of Marine Sciences, Havana, Cuba
| | - Maribel Guerra Vallespi
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
4
|
Lugo JM, Tafalla C, Oliva A, Pons T, Oliva B, Aquilino C, Morales R, Estrada MP. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. FISH & SHELLFISH IMMUNOLOGY 2019; 86:559-570. [PMID: 30481557 DOI: 10.1016/j.fsi.2018.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba; Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Ayme Oliva
- Animal Biotechnology Department, Veterinary Clinical Research Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Brizaida Oliva
- Pharmaceutical Department. Laboratory of Cancer Biology. Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Carolina Aquilino
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Reynold Morales
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba.
| |
Collapse
|
5
|
El-Aarag SA, Mahmoud A, Hashem MH, Abd Elkader H, Hemeida AE, ElHefnawi M. In silico identification of potential key regulatory factors in smoking-induced lung cancer. BMC Med Genomics 2017; 10:40. [PMID: 28592245 PMCID: PMC5463402 DOI: 10.1186/s12920-017-0284-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer is a leading cause of cancer-related death worldwide and is the most commonly diagnosed cancer. Like other cancers, it is a complex and highly heterogeneous disease involving multiple signaling pathways. Identifying potential therapeutic targets is critical for the development of effective treatment strategies. Methods We used a systems biology approach to identify potential key regulatory factors in smoking-induced lung cancer. We first identified genes that were differentially expressed between smokers with normal lungs and those with cancerous lungs, then integrated these differentially expressed genes (DEGs) with data from a protein-protein interaction database to build a network model with functional modules for pathway analysis. We also carried out a gene set enrichment analysis of DEG lists using the Kinase Enrichment Analysis (KEA), Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. Results Twelve transcription factors were identified as having potential significance in lung cancer (CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1, CRX, GABP, and TCF3); three of these (CRX, GABP, and TCF) have not been previously implicated in lung carcinogenesis. In addition, 11 kinases were found to be potentially related to lung cancer (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCZ, and INSR, and PRKAA1). However, PRKAA1 is reported here for the first time. MEPCE, CDK1, PRKCA, COPS5, GSK3B, BRCA1, EP300, and PIN1 were identified as potential hubs in lung cancer-associated signaling. In addition, we found 18 pathways that were potentially related to lung carcinogenesis, of which 12 (mitogen-activated protein kinase, gonadotropin-releasing hormone, Toll-like receptor, ErbB, and insulin signaling; purine and ether lipid metabolism; adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been previously identified. Conclusion Our systems-based approach identified potential key molecules in lung carcinogenesis and provides a basis for investigations of tumor development as well as novel drug targets for lung cancer treatment.
Collapse
Affiliation(s)
- Salem A El-Aarag
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Amal Mahmoud
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Medhat H Hashem
- Animal biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Hatem Abd Elkader
- Information Systems Department, Faculty of Computer and Information, Menoufia University, Al Minufiyah, Egypt
| | - Alaa E Hemeida
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Center, Cairo, Egypt. .,Center of Informatics, Nile university, Sheikh Zayed City, Giza, Egypt.
| |
Collapse
|