1
|
Freitas M, Pinho F, Pinho L, Silva S, Figueira V, Vilas-Boas JP, Silva A. Biomechanical Assessment Methods Used in Chronic Stroke: A Scoping Review of Non-Linear Approaches. SENSORS (BASEL, SWITZERLAND) 2024; 24:2338. [PMID: 38610549 PMCID: PMC11014015 DOI: 10.3390/s24072338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Non-linear and dynamic systems analysis of human movement has recently become increasingly widespread with the intention of better reflecting how complexity affects the adaptability of motor systems, especially after a stroke. The main objective of this scoping review was to summarize the non-linear measures used in the analysis of kinetic, kinematic, and EMG data of human movement after stroke. PRISMA-ScR guidelines were followed, establishing the eligibility criteria, the population, the concept, and the contextual framework. The examined studies were published between 1 January 2013 and 12 April 2023, in English or Portuguese, and were indexed in the databases selected for this research: PubMed®, Web of Science®, Institute of Electrical and Electronics Engineers®, Science Direct® and Google Scholar®. In total, 14 of the 763 articles met the inclusion criteria. The non-linear measures identified included entropy (n = 11), fractal analysis (n = 1), the short-term local divergence exponent (n = 1), the maximum Floquet multiplier (n = 1), and the Lyapunov exponent (n = 1). These studies focused on different motor tasks: reaching to grasp (n = 2), reaching to point (n = 1), arm tracking (n = 2), elbow flexion (n = 5), elbow extension (n = 1), wrist and finger extension upward (lifting) (n = 1), knee extension (n = 1), and walking (n = 4). When studying the complexity of human movement in chronic post-stroke adults, entropy measures, particularly sample entropy, were preferred. Kinematic assessment was mainly performed using motion capture systems, with a focus on joint angles of the upper limbs.
Collapse
Affiliation(s)
- Marta Freitas
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (F.P.); (L.P.); (S.S.); (V.F.)
- HM—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL, 4760-409 Vila Nova de Famalicão, Portugal
- Center for Rehabilitation Research (CIR), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
- Porto Biomechanics Laboratory (LABIOMEP), 4200-450 Porto, Portugal
| | - Francisco Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (F.P.); (L.P.); (S.S.); (V.F.)
- HM—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL, 4760-409 Vila Nova de Famalicão, Portugal
| | - Liliana Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (F.P.); (L.P.); (S.S.); (V.F.)
- HM—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL, 4760-409 Vila Nova de Famalicão, Portugal
- Center for Rehabilitation Research (CIR), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
- Porto Biomechanics Laboratory (LABIOMEP), 4200-450 Porto, Portugal
| | - Sandra Silva
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (F.P.); (L.P.); (S.S.); (V.F.)
- HM—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL, 4760-409 Vila Nova de Famalicão, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vânia Figueira
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (F.P.); (L.P.); (S.S.); (V.F.)
- HM—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL, 4760-409 Vila Nova de Famalicão, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Centre for Research, Training, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Augusta Silva
- Center for Rehabilitation Research (CIR), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
- Department of Physiotherapy, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
2
|
Wang L, Guo F, Zhao C, Zhao M, Zhao C, Guo J, Zhang L, Zhang L, Li Z, Zhu W. The effect of aerobic dancing on physical fitness and cognitive function in older adults during the COVID-19 pandemic-a natural experiment. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:196-204. [PMID: 37753419 PMCID: PMC10518797 DOI: 10.1016/j.smhs.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 09/28/2023] Open
Abstract
During the Coronavirus disease (COVID-19), the physical activity of older adults is at a lower level. The study aimed to examine the effectiveness of aerobic dancing on physical fitness and cognitive function in older adults. We conducted a randomized controlled trial with 34 older adults who were assigned into an aerobic dancing group and a control group. Three dance sessions weekly for 60 min were scheduled for the aerobic dancing group for a total of 12 weeks. Physical fitness, blood pressure, lipids, glucose, cognitive function were assessed before and after the intervention. Baseline adjusted Analysis of Covariance (ANCOVA) was used to determine whether outcome variables varied between groups at pre-test and post-test. Effect size (Cohen's d) was calculated to determine the differences between groups from baseline to post-test. After 12 weeks, we found that the aerobic dancing group showed significant improvement in memory (portrait memory: F = 10.45, p = 0.003, d = 1.18). The Limit of Stability (LOS) parameters in the aerobic dancing group displayed a significant increase after the intervention (right angle: F = 5.90, p = 0.022, d = 0.60; right-anterior angle: F = 4.23, p = 0.049, d = 0.12). Some beneficial effects were found on flexibility, grip strength, balance and subjective well-being (sit and reach: F = 0.25, p = 0.62, d = -0.40; grip strength: F = 3.38, p = 0.08, d = 0.89; one-legged standing with eyes closed: F = 1.26, p = 0.27, d = 0.50) in the aerobic dancing group. Aerobic dancing training was effective in improving memory and balance ability in older adults during the COVID-19 pandemic in China. In the future, aerobic dancing is a promising tool to encourage physical activity in older adults.
Collapse
Affiliation(s)
- Lin Wang
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Fei Guo
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Chenxi Zhao
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Minmin Zhao
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Chenglei Zhao
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Jiawei Guo
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Longhai Zhang
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Ling Zhang
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Zheng'ao Li
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| | - Wenfei Zhu
- School of Physical Education, Shaanxi Normal University, 710100, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Saraiva M, Vilas-Boas JP, Fernandes OJ, Castro MA. Effects of Motor Task Difficulty on Postural Control Complexity during Dual Tasks in Young Adults: A Nonlinear Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:628. [PMID: 36679423 PMCID: PMC9866022 DOI: 10.3390/s23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Few studies have evaluated the effect of a secondary motor task on the standing posture based on nonlinear analysis. However, it is helpful to extract information related to the complexity, stability, and adaptability to the environment of the human postural system. This study aimed to analyze the effect of two motor tasks with different difficulty levels in motor performance complexity on the static standing posture in healthy young adults. Thirty-five healthy participants (23.08 ± 3.92 years) performed a postural single task (ST: keep a quiet standing posture) and two motor dual tasks (DT). i.e., mot-DT(A)—perform the ST while performing simultaneously an easy motor task (taking a smartphone out of a bag, bringing it to the ear, and putting it back in the bag)—and mot-DT(T)—perform the ST while performing a concurrent difficult motor task (typing on the smartphone keyboard). The approximate entropy (ApEn), Lyapunov exponent (LyE), correlation dimension (CoDim), and fractal dimension (detrending fluctuation analysis, DFA) for the mediolateral (ML) and anterior-posterior (AP) center-of-pressure (CoP) displacement were measured with a force plate while performing the tasks. A significant difference was found between the two motor dual tasks in ApEn, DFA, and CoDim-AP (p < 0.05). For the ML CoP direction, all nonlinear variables in the study were significantly different (p < 0.05) between ST and mot-DT(T), showing impairment in postural control during mot-DT(T) compared to ST. Differences were found across ST and mot-DT(A) in ApEn-AP and DFA (p < 0.05). The mot-DT(T) was associated with less effectiveness in postural control, a lower number of degrees of freedom, less complexity and adaptability of the dynamic system than the postural single task and the mot-DT(A).
Collapse
Affiliation(s)
- Marina Saraiva
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- LABIOMEP-UP, Faculty of Sports and CIFI2D, University of Porto, 4200-450 Porto, Portugal
| | - Orlando J. Fernandes
- Sport and Health Department, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
- Sector of Physiotherapy, School of Health Sciences, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| |
Collapse
|
4
|
Kyeong Kim R, Park C, Jeon K, Park K, Kang N. Different unilateral force control strategies between athletes and non-athletes. J Biomech 2021; 129:110830. [PMID: 34736089 DOI: 10.1016/j.jbiomech.2021.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
This study investigated continuous visuomotor tracking capabilities between athletes and non-athlete controls using isometric force control paradigm. Nine female athletes and nine female age-matched controls performed unilateral hand-grip force control tasks with their dominant and non-dominant hands at 10% and 40% of maximal voluntary contraction (MVC), respectively. Three conventional outcome measures on force control capabilities included mean force, force accuracy, and force variability, and we additionally calculated two nonlinear dynamics variables including force regularity using sample entropy and force stability using maximal Lyapunov exponent. Finally, we performed correlation analyses to determine the relationship between nonlinear dynamics variables and conventional measures for each group. The findings indicated that force control capabilities as indicated by three conventional measures were not significantly different between athlete and non-athlete control groups. However, the athletes revealed less force regularity and greater force stability across hand conditions and targeted force levels than those in non-athlete controls. The correlation analyses found that increased force regularity (i.e., less sample entropy values) at 10% of MVC and decreased force regularity (i.e., greater sample entropy values) at 40% of MVC were significantly related to improved force accuracy and variability for the athlete group, and these patterns were not observed in the non-athlete control group. These findings suggested that the athletes may use different adaptive force control strategies as indicated by nonlinear dynamics tools.
Collapse
Affiliation(s)
- Rye Kyeong Kim
- Division of Sport Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Chaneun Park
- Department of Mechatronics Engineering, Incheon National University, Incheon, South Korea; Human Dynamics Laboratory, Incheon National University, Incheon, South Korea
| | - Kyoungkyu Jeon
- Division of Sport Science, Incheon National University, Incheon, South Korea; Health Promotion Center & Sport Science Institute, Incheon National University, Incheon, South Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, Incheon National University, Incheon, South Korea; Human Dynamics Laboratory, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Division of Sport Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea; Health Promotion Center & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
5
|
Gyebrószki G, Csernák G, Milton JG, Insperger T. The effects of sensory quantization and control torque saturation on human balance control. CHAOS (WOODBURY, N.Y.) 2021; 31:033145. [PMID: 33810721 DOI: 10.1063/5.0028197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of reaction delay, temporal sampling, sensory quantization, and control torque saturation is investigated numerically for a single-degree-of-freedom model of postural sway with respect to stability, stabilizability, and control effort. It is known that reaction delay has a destabilizing effect on the balancing process: the later one reacts to a perturbation, the larger the possibility of falling. If the delay is larger than a critical value, then stabilization is not even possible. In contrast, numerical analysis showed that quantization and control torque saturation have a stabilizing effect: the region of stabilizing control gains is greater than that of the linear model. Control torque saturation allows the application of larger control gains without overcontrol while sensory quantization plays a role of a kind of filter when sensory noise is present. These beneficial effects are reflected in the energy demand of the control process. On the other hand, neither control torque saturation nor sensory quantization improves stabilizability properties. In particular, the critical delay cannot be increased by adding saturation and/or sensory quantization.
Collapse
Affiliation(s)
- Gergely Gyebrószki
- Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Gábor Csernák
- Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - John G Milton
- The Claremont Colleges, W. M. Keck Science Center, Claremont, California 91711, USA
| | - Tamás Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, Budapest 1111, Hungary
| |
Collapse
|
6
|
Distinguishing Two Types of Variability in a Sit-to-Stand Task. Motor Control 2020; 24:168-188. [DOI: 10.1123/mc.2018-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/15/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022]
Abstract
Variability is commonly observed in complex behavior, such as the maintenance of upright posture. The current study examines the value added by using nonlinear measures of variability to identify dynamic stability instead of linear measures that reflect average fluctuations about a mean state. The largest Lyapunov exponent (λ1) and SD were calculated on mediolateral movement as participants performed a sit-to-stand task on a stable and unstable platform. Both measures identified changes in movement across postures, but results diverged when participants stood on the unstable platform. Large SD indicated an increase in movement variability, but small λ1 identified those movements as stable and controlled. The results suggest that a combination of linear and nonlinear analyses is useful in identifying the proportion of observed variability that may be attributed to structured, controlled sources. Nonlinear measures of variability, like λ1, can further be used to make predictions about transitions between stable postures and to identify a system’s resistance to disruption from external perturbations. Those features make nonlinear analyses highly applicable to both human movement research and clinical practice.
Collapse
|
7
|
Milton JG, Insperger T, Cook W, Harris DM, Stepan G. Microchaos in human postural balance: Sensory dead zones and sampled time-delayed feedback. Phys Rev E 2018; 98:022223. [PMID: 30253531 DOI: 10.1103/physreve.98.022223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 06/08/2023]
Abstract
Models for the stabilization of an inverted pendulum figure prominently in studies of human balance control. Surprisingly, fluctuations in measures related to the vertical displacement angle for quietly standing adults with eyes closed exhibit chaos. Here we show that small-amplitude chaotic fluctuations ("microchaos") can be generated by the interplay between three essential components of human neural balance control, namely time-delayed feedback, a sensory dead zone, and frequency-dependent encoding of force. When the sampling frequency of the force encoding is decreased, the sensitivity of the balance control to changes in the initial conditions increases. The sampled, time-delayed nature of the balance control may provide insights into why falls are more common in the very young and the elderly.
Collapse
Affiliation(s)
- John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | - Tamas Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, 1111 Budapest, Hungary
| | - Walter Cook
- W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | - David Money Harris
- Department of Engineering, Harvey Mudd College, Claremont, California 91711, USA
| | - Gabor Stepan
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
8
|
Shirota C, van Asseldonk E, Matjačić Z, Vallery H, Barralon P, Maggioni S, Buurke JH, Veneman JF. Robot-supported assessment of balance in standing and walking. J Neuroeng Rehabil 2017; 14:80. [PMID: 28806995 PMCID: PMC5556664 DOI: 10.1186/s12984-017-0273-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/08/2017] [Indexed: 11/10/2022] Open
Abstract
Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.
Collapse
Affiliation(s)
- Camila Shirota
- Rehabilitation Engineering Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zürich, Switzerland
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, MIRA, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Zlatko Matjačić
- University Rehabilitation Institute, Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Heike Vallery
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Pierre Barralon
- Health Division, Tecnalia Research and Innovation, Paseo Mikeletegi 1, 20009, Donostia-San Sebastian, Spain
| | - Serena Maggioni
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland.,Hocoma AG, Industriestrasse 4a, 8604, Volketswil, Switzerland
| | - Jaap H Buurke
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522 AH, Enschede, The Netherlands
| | - Jan F Veneman
- Health Division, Tecnalia Research and Innovation, Paseo Mikeletegi 1, 20009, Donostia-San Sebastian, Spain.
| |
Collapse
|