1
|
Aguilar-Perez DA, Urbina-Mendez CM, Maldonado-Gallegos B, Castillo-Cruz ODJ, Aguilar-Ayala FJ, Chuc-Gamboa MG, Vargas-Coronado RF, Cauich-Rodriguez JV. Mechanical Properties of Poly(Alkenoate) Cement Modified with Propolis as an Antiseptic. Polymers (Basel) 2023; 15:polym15071676. [PMID: 37050290 PMCID: PMC10096598 DOI: 10.3390/polym15071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Background: We assessed the effect of propolis on the antibacterial, mechanical, and adhesive properties of a commercial poly(alkenoate) cement. Methods: The cement was modified with various concentrations of propolis, and antibacterial assays were performed against S. mutans by both MTT assays and agar diffusion tests. The compressive, flexural, and adhesive properties were also evaluated. Results: the modified cement showed activity against S. mutans in both assays, although reductions in compressive (from 211.21 to 59.3 MPa) and flexural strength (from 11.1 to 6.2 MPa) were noted with the addition of propolis, while adhesive strength (shear bond strength and a novel pull-out method) showed a statistical difference (p < 0.05). Conclusion: the antiseptic potential of modified material against S. mutans will allow this material to be used in cases in which low mechanical resistance is required (in addition to its anti-inflammatory properties) when using atraumatic restorative techniques, especially in deep cavities.
Collapse
|
2
|
Ferreira AS, Macedo C, Silva AM, Delerue-Matos C, Costa P, Rodrigues F. Natural Products for the Prevention and Treatment of Oral Mucositis-A Review. Int J Mol Sci 2022; 23:ijms23084385. [PMID: 35457202 PMCID: PMC9030892 DOI: 10.3390/ijms23084385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer, a major world public health problem, is associated with chemotherapy treatments whose administration leads to secondary concerns, such as oral mucositis (OM). The OM disorder is characterized by the presence of ulcers in the oral mucosa that cause pain, bleeding, and difficulty in ingesting fluids and solids, or speaking. Bioactive compounds from natural sources have arisen as an effective approach for OM. This review aims to summarize the new potential application of different natural products in the prevention and treatment of OM in comparison to conventional ones, also providing a deep insight into the most recent clinical studies. Natural products, such as Aloe vera, Glycyrrhiza glabra, Camellia sinensis, Calendula officinalis, or honeybee crops, constitute examples of sources of bioactive compounds with pharmacological interest due to their well-reported activities (e.g., antimicrobial, antiviral, anti-inflammatory, analgesic, or wound healing). These activities are associated with the bioactive compounds present in their matrix (such as flavonoids), which are associated with in vivo biological activities and minimal or absent toxicity. Finally, encapsulation has arisen as a future opportunity to preserve the chemical stability and the drug bioa vailability of bioactive compounds and, most importantly, to improve the buccal retention period and the therapeutic effects.
Collapse
Affiliation(s)
- Ana Sofia Ferreira
- REQUIMTE/LAQV—Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.F.); (C.M.); (A.M.S.); (C.D.-M.)
| | - Catarina Macedo
- REQUIMTE/LAQV—Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.F.); (C.M.); (A.M.S.); (C.D.-M.)
| | - Ana Margarida Silva
- REQUIMTE/LAQV—Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.F.); (C.M.); (A.M.S.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV—Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.F.); (C.M.); (A.M.S.); (C.D.-M.)
| | - Paulo Costa
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV—Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.F.); (C.M.); (A.M.S.); (C.D.-M.)
- Correspondence: ; Tel.: +351-22-83-40-500
| |
Collapse
|
3
|
Xool-Tamayo J, Chan-Zapata I, Arana-Argaez VE, Villa-de la Torre F, Torres-Romero JC, Araujo-Leon JA, Aguilar-Ayala FJ, Rejón-Peraza ME, Castro-Linares NC, Vargas-Coronado RF, Cauich-Rodríguez JV. In vitro and in vivo anti-inflammatory properties of Mayan propolis. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220935280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Propolis has been used traditionally for different human diseases and even recently as dental biomaterials because of its antibacterial, antimycotic, and anti-inflammatory properties. However, a proper correlation between in vitro and in vivo anti-inflammatory properties has not been clearly established. Methods The composition of propolis was determined by high-performance liquid chromatography–ultraviolet mass spectrometry (HPLC-UV-MS). Viability of ethanolic propolis solution was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay on murine macrophages. The anti-inflammatory properties were assessed both in vitro through the enzyme-linked immunosorbent assay (ELISA) quantification of various cytokines and in vivo by induced edemas. Results Chemical analysis showed pinocembrin, pinobanksin-3-O-acetate, and pinobanksin-3-O-propionate as the main components of propolis. Macrophage viability was high (106%) when propolis was used up to 50 µg/mL. ELISA studies showed a reduction in the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) up to 145 pg/mL, 350 pg/mL, and 210 pg/mL, respectively, while the anti-inflammatory cytokines (IL-10 and IL-4) were increased up to 833 pg/mL and 446 pg/mL. Finally, edema was reduced on paw and ear mice by 9% and 22%, respectively. Conclusion Mayan propolis has strong in vitro anti-inflammatory properties without compromising macrophage viability, resulting in a low-to-mild in vivo anti-inflammatory response.
Collapse
Affiliation(s)
- Jorge Xool-Tamayo
- Centro de Investigación Científica de Yucatán, Hidalgo, Mérida, México
| | - Ivan Chan-Zapata
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | | | | | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | | | | | | | | | | | | |
Collapse
|
4
|
C. Gonçalves V, J. L. L. Pinheiro D, de la Rosa T, G. de Almeida AC, A. Scorza F, A. Scorza C. Propolis as A Potential Disease-Modifying Strategy in Parkinson's Disease: Cardioprotective and Neuroprotective Effects in the 6-OHDA Rat Model. Nutrients 2020; 12:E1551. [PMID: 32466610 PMCID: PMC7352297 DOI: 10.3390/nu12061551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with Parkinson's disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47×10-19), SDNN (p = 3.42×10-10) and RMSSD (p = 8.2×10-6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66×10-15) and reduced striatal fiber degeneration (p = 7.4×10-5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07×10-5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.
Collapse
Affiliation(s)
- Valeria C. Gonçalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Daniel J. L. L. Pinheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Tomás de la Rosa
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Minas Gerais 36301-160, Brazil;
| | - Fúlvio A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Carla A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| |
Collapse
|
5
|
Rapid Determination of the Freshness of Lotus Seeds Using Surface Desorption Atmospheric Pressure Chemical Ionization-Mass Spectrometry with Multivariate Analyses. J FOOD QUALITY 2019. [DOI: 10.1155/2019/1628796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to explore a new method to detect the freshness of lotus seeds, the lotus seeds stored for 0, 1, 2, and 3 years, respectively, were used as experimental materials and analyzed by DAPCI-MS (desorption atmospheric pressure chemical ionization-mass spectrometry). The obtained data were processed by principal component analysis (PCA) and backpropagation artificial neural networks (BP-ANNs). The result showed that DAPCI-MS could obtain abundant chemical material information from the slice surface of lotus seeds. The BP-ANNs model could be applied not only to distinguish fresh and aged lotus seeds with the testing set accuracies of 95.0% and 91.7%, respectively, but also to classify lotus seeds with different storage times with the testing set accuracies of 90.0%, 85.0%, 85.0%, and 90.0%, respectively. The paper developed a fast, convenient, and accurate method for the freshness detection of lotus seed and would provide reliable reference value for rapid authentication of food freshness by the rapid mass spectrometry technique.
Collapse
|
6
|
|
7
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Affiliation(s)
- Deepak M. Kasote
- Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-411 043, Maharashtra, India
| |
Collapse
|
9
|
Guo X, Cui M, Deng M, Liu X, Huang X, Zhang X, Luo L. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci Rep 2017; 7:46579. [PMID: 28425482 PMCID: PMC5397862 DOI: 10.1038/srep46579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies.
Collapse
Affiliation(s)
- Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Min Deng
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xingxing Liu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
10
|
Wang X, Yang M, Wang Z, Zhang H, Wang G, Deng M, Chen H, Luo L. Differentiation Using Microwave Plasma Torch Desorption Mass Spectrometry of Navel Oranges Cultivated in Neighboring Habitats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2488-2494. [PMID: 28269986 DOI: 10.1021/acs.jafc.7b00553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular fingerprinting of intact fruit samples combined with statistical data analysis can allow the assessment of fruit quality and location of origin. Herein, microwave plasma torch desorption ionization mass spectrometry (MPT-MS) was applied to produce molecular fingerprints for the juice sac and exocarp of navel oranges cultivated in three closely located habitats, and the mass spectrometric fingerprints were differentiated by principal component analysis (PCA). Because of the relatively high temperature and high ionization efficiency of MPT, the volatile aroma compounds and semivolatile chemicals in the navel oranges were sensitively detected and confidently identified by collision induced dissociation (CID). The limit of detection (LOD) of MPT-MS for vanillin was 0.119 μg/L, with the relative standard deviation (RSD, n = 10) of 1.7%. The results showed that MPT-MS could be a powerful analytical platform for the sensitive molecular analysis of fruits at molecular level with high chemical specificity, allowing differentiation between the same sorts grown in neighboring habitats.
Collapse
Affiliation(s)
- Xinchen Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Meiling Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Zhiyuan Wang
- Nanchang County the First Secondary School in Liantang , Nanchang 330046, People's Republic of China
| | - Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Guofeng Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Min Deng
- School of Life Sciences, Nanchang University , Nanchang 330031, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Liping Luo
- School of Life Sciences, Nanchang University , Nanchang 330031, People's Republic of China
| |
Collapse
|