1
|
Zhang C, Quan X, Lian W, Liu R, Wen Q, Chen X. Phenotypic characterization and genomic analysis of Limosilactobacillus fermentum phage. Curr Res Food Sci 2024; 8:100748. [PMID: 38764976 PMCID: PMC11098726 DOI: 10.1016/j.crfs.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Limosilactobacillus (L.) fermentum is widely utilized for its beneficial properties, but lysogenic phages can integrate into its genome and can be induced to enter the lysis cycle under certain conditions, thus accomplishing lysis of host cells, resulting in severe economic losses. In this study, a lysogenic phage, LFP03, was induced from L. fermentum IMAU 32510 by UV irradiation for 70 s. The electron microscopy showed that this phage belonged to Caudoviricetes class. Its genome size was 39,556 bp with a GC content of 46.08%, which includes 20 functional proteins. Compared with other L. fermentum phages, the genome of phage LFP03 exhibited deletions, inversions and translocations. Biological analysis showed that its optimal multiplicity of infection was 0.1, with a burst size of 133.5 ± 4.9 PFU/infective cell. Phage LFP03 was sensitive to temperature and pH value, with a survival rate of 48.98% at 50 °C. It could be completely inactivated under pH 2. The adsorption ability of this phage was minimally affected by temperature and pH value, with adsorption rates reaching 80% under all treated conditions. Divalent cations could accelerate phage adsorption, while chloramphenicol expressed little influence. This study might expand the related knowledge of L. fermentum phages, and provide some theoretical basis for improving the stability of related products and establishing phage control measures.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xingyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Weiqi Lian
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Runze Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| |
Collapse
|
2
|
Chen X, Zhang C, Guo J, Huang X, Lv R, Quan X. Thermal and Chemical Inactivation of Bacillus Phage BM-P1. J Food Prot 2024; 87:100223. [PMID: 38242288 DOI: 10.1016/j.jfp.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Bacillus spp. are often used as probiotics; however, they can be infected by phages, leading to significant economic losses. Biocidal and thermal treatments are considered rapid and effective methods for controlling microbial contamination. To prevent viral contamination in industrial dairy production, the impact of temperature and biocides on the viability of Bacillus methylotrophic phage BM-P1 was assessed. The results demonstrated that reconstituted skim milk (RSM) as a medium showed the most effective protective effect on phage BM-P1. Treatment at 90°C for 5 min or 72°C for 10 min inactivated it to nondetectable levels from the initial titer of 7.19 ± 0.11 log, regardless of the culture medium. Sodium hypochlorite exhibited the best inactivating effect, which could reduce the phage titer below the detection level in 4 min at 50 ppm. Additionally, treatment with 75% ethanol for 20 min or 50% isopropanol for 30 min could achieve inactivation to nondetectable levels. The inactivating effect of peracetic acid was limited; even when treated at the highest concentration (0.45%) for 60 min, only a 2.47 ± 0.17 log reduction was observed. This study may provide some theoretical basis and data support for establishing measures against Bacillus spp. phages.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China.
| | - Can Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Jing Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xuecheng Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xingyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| |
Collapse
|
3
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Romero-Calle DX, de Santana VP, Benevides RG, Aliaga MTA, Billington C, Góes-Neto A. Systematic review and meta-analysis: the efficiency of bacteriophages previously patented against pathogenic bacteria on food. Syst Rev 2023; 12:201. [PMID: 37898821 PMCID: PMC10612260 DOI: 10.1186/s13643-023-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023] Open
Abstract
Food-borne diseases are a global public health issue with 1 in 10 people falling ill after eating contaminated food every year. In response, the food industry has implemented several new pathogen control strategies, such as biotechnological tools using the direct application of bacteriophages for biological control. We have undertaken a systematic review and meta-analysis that evaluated the efficiency of patented phages as a biological control for food-borne pathogens and determined the physical-chemical characteristics of the antimicrobial effect. Included and excluded criteria was developed. Included criteria: Phage patent files with an application in biological control on food and scientific articles and book chapters that used phages patented for food biological control. Excluded criteria: Patent documents, scientific articles, and book chapters that included phage therapy in humans, animals, and biological control on plants but did not have an application on food were not considered in our study. The systematic analysis identified 77 documents, 46 scientific articles, and 31 documents of patents and 23 articles was included in the meta-analysis. Listeria monocytogenes and Salmonella sp. comprised most of the targets identified in the screening, so that we focused on these strains to do the meta-analysis. There are a total of 383 and 192 experiments for Listeria and Salmonella phages for quantitative data analysis.Indexing databases for the bibliographic search (Scopus, Web of Science (WoS) and PubMed (Medline) were addressed by an automated script written in Python 3 Python Core Team (2015) and deposited on GitHub ( https://github.com/glenjasper ).A random-effects meta-analysis revealed (i) significant antimicrobial effect of Listeria phages in apple, apple juice, pear, and pear juice, (ii) significant antimicrobial effect of Salmonella phages in eggs, apple, and ready-to-eat chicken, (iii) no heterogeneity was identified in either meta-analysis, (iv) publication bias was detected for Listeria phages but not for Salmonella phages. (v) ListShield and Felix01 phages showed the best result for Listeria and Salmonella biological control, respectively, (vi) concentration of phage and bacteria, time and food had significant effect in the biological control of Listeria, (vii) temperature and time had a significant effect on the antimicrobial activity of Salmonella phages. The systematic review and meta-analyses to determine the efficiency of bacteriophages previously patented against pathogenic bacteria on dairy products, meat, fruits and vegetables. Besides, the discovering of key factors for efficacy, so that future applications of phage biotechnology in foods can be optimally deployed.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil.
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil.
- Biotechnology Area, Institute of Pharmaco-Biochemical Research, Faculty of Pharmaceutical and Biochemical Sciences, Higher San Andres University, P.O. Box 3239, La Paz, Bolivia.
| | - Vinicius Pereira de Santana
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Maria Teresa Alvarez Aliaga
- Biotechnology Area, Institute of Pharmaco-Biochemical Research, Faculty of Pharmaceutical and Biochemical Sciences, Higher San Andres University, P.O. Box 3239, La Paz, Bolivia
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, PO Box 29-181, Christchurch, 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana, BA, 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana, BA, 44036-900, Brazil
| |
Collapse
|
5
|
Shymialevich D, Wójcicki M, Świder O, Średnicka P, Sokołowska B. Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris. Genes (Basel) 2023; 14:1303. [PMID: 37372483 PMCID: PMC10297869 DOI: 10.3390/genes14061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The spoilage of juices by Alicyclobacillus spp. remains a serious problem in industry and leads to economic losses. Compounds such as guaiacol and halophenols, which are produced by Alicyclobacillus, create undesirable flavors and odors and, thus, decrease the quality of juices. The inactivation of Alicyclobacillus spp. constitutes a challenge because it is resistant to environmental factors, such as high temperatures, and active acidity. However, the use of bacteriophages seems to be a promising approach. In this study, we aimed to isolate and comprehensively characterize a novel bacteriophage targeting Alicyclobacillus spp. The Alicyclobacillus phage strain KKP 3916 was isolated from orchard soil against the Alicyclobacillus acidoterrestris strain KKP 3133. The bacterial host's range and the effect of phage addition at different rates of multiplicity of infections (MOIs) on the host's growth kinetics were determined using a Bioscreen C Pro growth analyzer. The Alicyclobacillus phage strain KKP 3916, retained its activity in a wide range of temperatures (from 4 °C to 30 °C) and active acidity values (pH from 3 to 11). At 70 °C, the activity of the phage decreased by 99.9%. In turn, at 80 °C, no activity against the bacterial host was observed. Thirty minutes of exposure to UV reduced the activity of the phages by almost 99.99%. Based on transmission-electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the Alicyclobacillus phage strain KKP 3916 was classified as a tailed bacteriophage. The genomic sequencing revealed that the newly isolated phage had linear double-stranded DNA (dsDNA) with sizes of 120 bp and 131 bp and 40.3% G+C content. Of the 204 predicted proteins, 134 were of unknown function, while the remainder were annotated as structural, replication, and lysis proteins. No genes associated with antibiotic resistance were found in the genome of the newly isolated phage. However, several regions, including four associated with integration into the bacterial host genome and excisionase, were identified, which indicates the temperate (lysogenic) life cycle of the bacteriophage. Due to the risk of its potential involvement in horizontal gene transfer, this phage is not an appropriate candidate for further research on its use in food biocontrol. To the best of our knowledge, this is the first article on the isolation and whole-genome analysis of the Alicyclobacillus-specific phage.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
6
|
Węglewska M, Barylski J, Wojnarowski F, Nowicki G, Łukaszewicz M. Genome, biology and stability of the Thurquoise phage – A new virus from the Bastillevirinae subfamily. Front Microbiol 2023; 14:1120147. [PMID: 36998400 PMCID: PMC10043171 DOI: 10.3389/fmicb.2023.1120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Bacteriophages from the Bastillevirinae subfamily (Herelleviridae family) have proven to be effective against bacteria from the Bacillus genus including organisms from the B. cereus group, which cause food poisoning and persistent contamination of industrial installations. However, successful application of these phages in biocontrol depends on understanding of their biology and stability in different environments. In this study, we isolated a novel virus from garden soil in Wrocław (Poland) and named it ‘Thurquoise’. The genome of that phage was sequenced and assembled into a single continuous contig with 226 predicted protein-coding genes and 18 tRNAs. The cryo-electron microscopy revealed that Thurquoise has complex virion structure typical for the Bastillevirinae family. Confirmed hosts include selected bacteria from the Bacillus cereus group–specifically B. thuringiensis (isolation host) and B. mycoides, but susceptible strains display different efficiency of plating (EOP). The eclipse and latent periods of Thurquoise in the isolation host last ~ 50 min and ~ 70 min, respectively. The phage remains viable for more than 8 weeks in variants of the SM buffer with magnesium, calcium, caesium, manganese or potassium and can withstand numerous freeze–thaw cycles if protected by the addition of 15% glycerol or, to a lesser extent, 2% gelatine. Thus, with proper buffer formulation, this virus can be safely stored in common freezers and refrigerators for a considerable time. The Thurquoise phage is the exemplar of a new candidate species within the Caeruleovirus genus in the Bastillevirinae subfamily of the Herelleviridae family with a genome, morphology and biology typical for these taxa.
Collapse
Affiliation(s)
- Martyna Węglewska
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- *Correspondence: Jakub Barylski,
| | - Filip Wojnarowski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
7
|
Gewtaisong J, Chukeatirote E, Ahn J. Characterization of Bacillus subtilis bacteriophage BasuTN3 isolated from Thua Nao, a thai fermented soybean food product. Food Sci Biotechnol 2023; 32:203-208. [PMID: 36647518 PMCID: PMC9839916 DOI: 10.1007/s10068-022-01188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023] Open
Abstract
The infection of bacteriophage is of great concern in food industry as this can result in complete fermentation failure. In this study, a virulent bacteriophage, named BasuTN3, was isolated from Thua Nao, a Thai fermented soybean. The stability of BasuTN3 was evaluated under various ranges of temperature, pH, chloroform, UV, and disinfectants. The results showed that the isolated BasuTN3 appeared to be specific to its bacterial host, which was identified as Bacillus subtilis strain TN3 based on the 16 S rRNA gene sequence analysis. Under TEM, the BasuTN3 belonged to the family Myoviridae. The isolated BasuTN3 could withstand wide temperature ranges (4-45 °C) and pH conditions (5-11). The BasuTN3 was susceptible to chloroform, UV, and commonly used disinfectants. The results obtained expand the knowledge of the Bacillus bacteriophage diversity in the fermented soybean products and provide useful information for the bacteriophage and its bacterial starter cultures.
Collapse
Affiliation(s)
| | | | - Juhee Ahn
- Department of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
8
|
Zhang Z, Liang L, Li D, Li Y, Sun Q, Li Y, Yang H. Bacillus subtilis phage phi18: genomic analysis and receptor identification. Arch Virol 2023; 168:17. [PMID: 36593367 DOI: 10.1007/s00705-022-05686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023]
Abstract
Bacillus subtilis strains play a pivotal role in the fermentation industry. B. subtilis phages can cause severe damage by infecting bacterial cells used in industrial fermentation processes. In this work, we isolated and characterized a Bacillus subtilis-infecting phage, termed phi18. Transmission electron microscopy revealed that phage phi18 particles have typical myovirus morphology, with an icosahedral head connected to a contractile tail. Genomic analysis revealed that the phage genome is a linear double-stranded DNA molecule of 147,298 bp with terminal redundancy of 14,434 bp, and 226 protein coding genes and four tRNA genes were predicted in the genome. Phage-resistant mutants were selected from a mariner transposon-insertion library of B. subtilis 168 in which two bacterial genes, tagE and pgcA, which are required for the glycosylation of wall teichoic acid (WTA), were found to be disrupted, suggesting that WTA is the receptor for phage phi18. Comparative genomic analysis showed that phage phi18 is a new member of the genus Okubovirus of the family Herelleviridae. Finally, general characteristics of the phage-resistant mutants, including biofilm formation, growth, and sporulation, were examined. The results showed that the phage-resistant mutants grew as rapidly as the parental strain B. subtilis 168 at 42 °C, suggesting that these phage-resistant mutants may be used as starters in fermentation processes.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li Liang
- Shandong Vland Biotech Co., Ltd, Shandong, 251700, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yutong Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qinghui Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Hainan, 571199, China
| | - Ye Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Hainan University, Hainan, 571199, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
9
|
Tamang JP, Kharnaior P, Pariyar P, Thapa N, Lar N, Win KS, Mar A, Nyo N. Shotgun sequence-based metataxonomic and predictive functional profiles of Pe poke, a naturally fermented soybean food of Myanmar. PLoS One 2021; 16:e0260777. [PMID: 34919575 PMCID: PMC8682898 DOI: 10.1371/journal.pone.0260777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Pe poke is a naturally fermented sticky soybean food of Myanmar. The present study was aimed to profile the whole microbial community structure and their predictive gene functionality of pe poke samples prepared in different fermentation periods viz. 3 day (3ds), 4 days (4ds), 5 days (5ds) and sun-dried sample (Sds). The pH of samples was 7.6 to 8.7, microbial load was 2.1-3.9 x 108 cfu/g with dynamic viscosity of 4.0±1.0 to 8.0±1.0cP. Metataxonomic profile of pe poke samples showed different domains viz. bacteria (99.08%), viruses (0.65%), eukaryota (0.08%), archaea (0.03%) and unclassified sequences (0.16%). Firmicutes (63.78%) was the most abundant phylum followed by Proteobacteria (29.54%) and Bacteroidetes (5.44%). Bacillus thermoamylovorans was significantly abundant in 3ds and 4ds (p<0.05); Ignatzschineria larvae was significantly abundant in 5ds (p<0.05), whereas, Bacillus subtilis was significantly abundant in Sds (p <0.05). A total of 172 species of Bacillus was detected. In minor abundance, the existence of bacteriophages, archaea, and eukaryotes were also detected. Alpha diversity analysis showed the highest Simpson's diversity index in Sds comparable to other samples. Similarly, a non-parametric Shannon's diversity index was also highest in Sds. Good's coverage of 0.99 was observed in all samples. Beta diversity analysis using PCoA showed no significant clustering. Several species were shared between samples and many species were unique to each sample. In KEGG database, a total number of 33 super-pathways and 173 metabolic sub-pathways were annotated from the metagenomic Open Reading Frames. Predictive functional features of pe poke metagenome revealed the genes for the synthesis and metabolism of wide range of bioactive compounds including various essential amino acids, different vitamins, and enzymes. Spearman's correlation was inferred between the abundant species and functional features.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Pynhunlang Kharnaior
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Priyambada Pariyar
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Sikkim University, Tadong, Sikkim, India
| | - Ni Lar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Khin Si Win
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Ae Mar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Nyo Nyo
- Department of Geography, University of Mandalay, Mandalay, Myanmar
| |
Collapse
|
10
|
Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res Int 2021; 147:110492. [PMID: 34399488 DOI: 10.1016/j.foodres.2021.110492] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023]
Abstract
Salmonella is one of the most common foodborne pathogens around the world. Phages are envisioned as a new strategy to control foodborne pathogenic bacteria and food safety. A Salmonella specific lytic phage vB_SalS-LPSTLL (LPSTLL) was selected for food applications on the basis of lytic range, lytic efficiency, functional stability and characteristics. Phage LPSTLL was able to lyse 11 Salmonella serotypes, which represents the broadest range reported Salmonella phages, and was able to suppress the growth of Salmonella enterica in liquid culture over nine hours. LPSTLL exhibited rapid reproductive activity with a short latent period and a large burst size in one-step growth experiment. LPSTLL remained active over a pH range of 3.0 to 12.0, and at incubation temperatures up to 60 °C for 60 min, indicating wide applicability for food processing and storage. Significant reductions of viable Salmonella were observed in diverse foods (milk, apple juice, chicken and lettuce) with reductions up to 2.8 log CFU/mL recorded for milk. Sensory evaluation indicated that treatment with phage LPSTLL did not alter the visual or tactile quality of food matrices. Genome analysis of LPSTLL indicated the absence of any virulence or antimicrobial resistance genes. Genomic comparisons suggest phage LPSTLL constitutes a novel member of a new genus, the LPSTLLvirus with the potential for Salmonella biocontrol in the food industry.
Collapse
|
11
|
Lorenzo-Rebenaque L, Malik DJ, Catalá-Gregori P, Marin C, Sevilla-Navarro S. In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry. Pharmaceuticals (Basel) 2021; 14:ph14050434. [PMID: 34066346 PMCID: PMC8148174 DOI: 10.3390/ph14050434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
The therapeutic use of bacteriophages is recognized as a viable method to control Salmonella. Microencapsulation of phages in oral dosage forms may protect phages from inherent challenges of the gastrointestinal tract in chickens. Therefore, the main objective of this study was to assess the survival of Salmonella BP FGS011 (non-encapsulated and microencapsulated) through the gastrointestinal tract under in vitro as well as in vivo conditions after oral administration to 1-day-old chicks. To this end, the phage FGS011 was encapsulated in two different pH-responsive formulations with polymers Eudragit® L100, and Eudragit® S100 using the process of spray drying. Phages encapsulated in either of the two formulations were able to survive exposure to the proventriculus-gizzard in vitro conditions whereas free phages did not. Moreover, phages formulated in polymer Eudragit® S100 would be better suited to deliver phage to the caeca in chickens. In the in vivo assay, no statistically significant differences were observed in the phage concentrations across the gastrointestinal tract for either the free phage or the encapsulated phage given to chicks. This suggested that the pH of the proventriculus/gizzard in young chicks is not sufficiently acidic to cause differential phage titre reductions, thereby allowing free phage survival in vivo.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
| | - Danish J. Malik
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, UK;
| | - Pablo Catalá-Gregori
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Centro de Calidad Avícola y Alimentacion Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Correspondence: ; Tel.: +34-657506085
| | - Sandra Sevilla-Navarro
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain; (L.L.-R.); (P.C.-G.); (S.S.-N.)
- Centro de Calidad Avícola y Alimentacion Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain
| |
Collapse
|
12
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
13
|
Complete genome sequence of a novel Bacillus phage, P59, that infects Bacillus oceanisediminis. Arch Virol 2020; 165:2679-2683. [PMID: 32797339 DOI: 10.1007/s00705-020-04761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
P59, a virulent phage of Bacillus oceanisediminis, was isolated from the sediment of Weiming Lake at Peking University (Beijing, China). P59 showed the typical morphology of myovirids. The complete genome sequence of P59 is 159,363 bp in length with a G+C content of 42.34%. The genome sequence has very low similarity to the other phage genome sequences in the GenBank database, suggesting that P59 is a new phage. A total of 261 open reading frames and 15 tRNA genes were predicted. Based on its morphological and genetic traits, we propose phage P59 to be a new member of the family Herelleviridae.
Collapse
|
14
|
Mahmoud ERA, Ahmed HAH, Abo-senna ASM, Riad OKM, Abo- Shadi MMAA–R. Isolation and characterization of six gamma-irradiated bacteriophages specific for MRSA and VRSA isolated from skin infections. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1795564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Hala Ahmed Hussein Ahmed
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic, Energy Authority, Cairo, Egypt
| | | | - Omnia Karem M. Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
15
|
Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Front Microbiol 2020; 11:259. [PMID: 32153543 PMCID: PMC7047879 DOI: 10.3389/fmicb.2020.00259] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has indicated that the multiple drug resistant Vibrio parahaemolyticus may pose a serious threat to public health and economic concerns for humans globally. Here, two lytic bacteriophages, namely vB_VpS_BA3 and vB_VpS_CA8, were isolated from sewage collected in Guangzhou, China. Electron microscopy studies revealed both virions taxonomically belonged to the Siphoviridae family with icosahedral head and a long non-contractile tail. The double-stranded DNA genome of phage BA3 was composed of 58648 bp with a GC content of 46.30% while phage CA8 was 58480 bp with an average GC content of 46.42%. In total, 85 putative open reading frames (ORFs) were predicted in the phage BA3 genome while 84 were predicted in that of CA8. The ORFs were associated with phage structure, packing, host lysis, DNA metabolism, and additional functions. Furthermore, average nucleotide identity analysis, comparative genomic features and phylogenetic analysis revealed that BA3 and CA8 represented different isolates but novel members of the family, Siphoviridae. Regarding the host range of the 61 V. parahaemolyticus isolates, BA3 and CA8 had an infectivity of 8.2 and 36.1%, respectively. Furthermore, ∼100 plaque-forming units (pfu)/cell for phage BA3 and ∼180 pfu/cell for phage CA8 were determined to be the viral load under laboratory growth conditions. Accordingly, the phage-killing assay in vitro revealed that phage CA8 achieved approximately 3.65 log unit reductions. The present results indicate that CA8 is potentially applicable for biological control of multidrug resistant V. parahaemolyticus.
Collapse
Affiliation(s)
- Meiyan Yang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yongjian Liang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shixuan Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Hanfang Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuanming Ye
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Xu J, Li X, Kang G, Bai L, Wang P, Huang H. Isolation and Characterization of AbTJ, an Acinetobacter baumannii Phage, and Functional Identification of Its Receptor-Binding Modules. Viruses 2020; 12:v12020205. [PMID: 32059512 PMCID: PMC7077233 DOI: 10.3390/v12020205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
A. baumannii is an opportunistic pathogen and a major cause of various community-acquired infections. Strains of this species can be resistant to multiple antimicrobial agents, leaving limited therapeutic options, also lacking in methods for accurate and prompt diagnosis. In this context, AbTJ, a novel phage that infects A. baumannii MDR-TJ, was isolated and characterized, together with its two tail fiber proteins. Morphological analysis revealed that it belongs to Podoviridae family. Its host range, growth characteristics, stability under various conditions, and genomic sequence, were systematically investigated. Bioinformatic analysis showed that AbTJ consists of a circular, double-stranded 42670-bp DNA molecule which contains 62 putative open reading frames (ORFs). Genome comparison revealed that the phage AbTJ is related to the Acinetobacter phage Ab105-1phi (No. KT588074). Tail fiber protein (TFPs) gp52 and gp53 were then identified and confirmed as species-specific proteins. By using a combination of bioluminescent methods and magnetic beads, these TFPs exhibit excellent specificity to detect A. baumannii. The findings of this study can be used to help control opportunistic infections and to provide pathogen-binding modules for further construction of engineered bacteria of diagnosis and treatment.
Collapse
Affiliation(s)
- Jingzhi Xu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaobo Li
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Liang Bai
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
- Correspondence: (P.W.); (H.H.); Tel.: +86-22-6031-8081 (P.W.); +86-22-2740-3389 (H.H.)
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence: (P.W.); (H.H.); Tel.: +86-22-6031-8081 (P.W.); +86-22-2740-3389 (H.H.)
| |
Collapse
|
17
|
Abstract
Here, the genome sequences of two soil bacteriophages isolated from a red chili plantation in Indonesia are presented. The genome of vB_BspS_SplendidRed (42,859 bp) is highly similar to Bacillus phage Ray17 from the United States, while vB_BspM_MarvelLand (156,945 bp) is highly similar to Bacillus phage BC01 from South Korea. Here, the genome sequences of two soil bacteriophages isolated from a red chili plantation in Indonesia are presented. The genome of vB_BspS_SplendidRed (42,859 bp) is highly similar to Bacillus phage Ray17 from the United States, while vB_BspM_MarvelLand (156,945 bp) is highly similar to Bacillus phage BC01 from South Korea.
Collapse
|
18
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. The use of bacteriophages to control and detect pathogens in the dairy industry. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
| | - Declan Bolton
- Food Research Centre Teagasc Ashtown, Dublin 15 Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
- APC Microbiome Institute, Biosciences Building University College Cork Cork Ireland
| |
Collapse
|
19
|
Hyman P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals (Basel) 2019; 12:E35. [PMID: 30862020 PMCID: PMC6469166 DOI: 10.3390/ph12010035] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
For a bacteriophage to be useful for phage therapy it must be both isolated from the environment and shown to have certain characteristics beyond just killing strains of the target bacterial pathogen. These include desirable characteristics such as a relatively broad host range and a lack of other characteristics such as carrying toxin genes and the ability to form a lysogen. While phages are commonly isolated first and subsequently characterized, it is possible to alter isolation procedures to bias the isolation toward phages with desirable characteristics. Some of these variations are regularly used by some groups while others have only been shown in a few publications. In this review I will describe (1) isolation procedures and variations that are designed to isolate phages with broader host ranges, (2) characterization procedures used to show that a phage may have utility in phage therapy, including some of the limits of such characterization, and (3) results of a survey and discussion with phage researchers in industry and academia on the practice of characterization of phages.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology/Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA.
| |
Collapse
|
20
|
Sharaf A, Oborník M, Hammad A, El-Afifi S, Marei E. Characterization and comparative genomic analysis of virulent and temperate Bacillus megaterium bacteriophages. PeerJ 2018; 6:e5687. [PMID: 30581654 PMCID: PMC6292376 DOI: 10.7717/peerj.5687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies provide unique possibilities for the comprehensive assessment of the environmental diversity of bacteriophages. Several Bacillus bacteriophages have been isolated, but very few Bacillus megaterium bacteriophages have been characterized. In this study, we describe the biological characteristics, whole genome sequences, and annotations for two new isolates of the B. megaterium bacteriophages (BM5 and BM10), which were isolated from Egyptian soil samples. Growth analyses indicated that the phages BM5 and BM10 have a shorter latent period (25 and 30 min, respectively) and a smaller burst size (103 and 117 PFU, respectively), in comparison to what is typical for Bacillus phages. The genome sizes of the phages BM5 and BM10 were 165,031 bp and 165,213 bp, respectively, with modular organization. Bioinformatic analyses of these genomes enabled the assignment of putative functions to 97 and 65 putative ORFs, respectively. Comparative analysis of the BM5 and BM10 genome structures, in conjunction with other B. megaterium bacteriophages, revealed relatively high levels of sequence and organizational identity. Both genomic comparisons and phylogenetic analyses support the conclusion that the sequenced phages (BM5 and BM10) belong to different sub-clusters (L5 and L7, respectively), within the L-cluster, and display different lifestyles (lysogenic and lytic, respectively). Moreover, sequenced phages encode proteins associated with Bacillus pathogenesis. In addition, BM5 does not contain any tRNA sequences, whereas BM10 genome codes for 17 tRNAs.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Adel Hammad
- Department of Microbiology, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Sohair El-Afifi
- Department of Agricultural Microbiology, Virology Laboratory, Ain Shams University, Cairo, Egypt
| | - Eman Marei
- Department of Agricultural Microbiology, Virology Laboratory, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Litt PK, Saha J, Jaroni D. Characterization of Bacteriophages Targeting Non-O157 Shiga Toxigenic Escherichia coli. J Food Prot 2018; 81:785-794. [PMID: 29624104 DOI: 10.4315/0362-028x.jfp-17-460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-O157 Shiga toxigenic Escherichia coli (STEC) are an important group of foodborne pathogens, implicated in several outbreaks and recalls in the past 2 decades. It is therefore crucial to devise effective control strategies against these pathogens. Bacteriophages present an attractive alternative to conventional pathogen control methods in the food industry. Bacteriophages, targeting non-O157 STEC (O26, O45, O103, O111, O121, O145), were isolated from beef cattle operations in Oklahoma. Their host range and lytic ability were determined against several ( n = 21) non-O157 STEC isolates, by using the spot-on-lawn assay. Isolated phages were purified, and their morphology was determined under a transmission electron microscope. Infection kinetics of selected phages ( n = 19), particularly adsorption rate, rise period, latent period, and burst size, were determined. Phages were also evaluated for stability at a wide pH range (1 to 11) and temperature range (-80 to 90°C). In total, 45 phages were isolated and classified into Myoviridae, Siphoviridae, or Tectiviridae. The phages had a latent period between 8 and 37 min, a rise period between 19 and 40 min, and a large burst size (12 to 794 virions per infected cell), indicating high lytic activity. Tested phages were stable at pH 5 to 9 for 24 h, whereas a decrease in phage titer was observed at pHs 1, 2, and 11. Phages were stable at 40 and 60°C, except for O103-specific phages. At 70°C, all the phages lost viability after 20 min, except three phages targeting O26 and O121 and one phage targeting O45 and O111 STEC, which remained viable for 60 min. All the phages lost activity after 10 min at 90°C, except one each of O26 and O121 STEC-infecting phages that remained viable for 60 min. Phages remained stable for 90 days under refrigerated (4°C) and frozen (-20 and -80°C) storage. Characterization of phages, targeting diverse non-O157 STEC serotypes, could help in the development of effective biocontrol strategies for this group of pathogens in the food industry.
Collapse
Affiliation(s)
- Pushpinder Kaur Litt
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Joyjit Saha
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Divya Jaroni
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| |
Collapse
|
22
|
Shende RK, Hirpurkar SD, Sannat C, Rawat N, Pandey V. Isolation and characterization of bacteriophages with lytic activity against common bacterial pathogens. Vet World 2017; 10:973-978. [PMID: 28919692 PMCID: PMC5591488 DOI: 10.14202/vetworld.2017.973-978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Aim: Present investigation was conducted to isolate and characterize bacteriophages with lytic activity against common bacterial pathogens. Materials and Methods: A total of 60 samples of animal waste disposal from cattle (42) and buffalo (18) farms were collected from three different strata, i.e., top, mid, and bottom of collection tank. Samples were primarily subjected to rapid detection methods, and then isolation of phage was done by double agar layer method using Bacillus subtilis (BsH) and Escherichia coli (EH) as host system. Phages were characterized on the basis of plaque morphology, temperature, pH susceptibility, and host range. Results: Recovery of phages was higher from dairy cattle farm waste (78.57%) as compared to buffalo farm waste (72.22%) and bottom layer of tank showed maximum recovery. Bacillus subtilis (91%) supported the growth of more phages as compared to E. coli (9%). Three different phage morphotypes were observed each against Bacillus subtilis (BsHR1, BsHR2, and BsHR3) and E. coli (EHR1, EHR2, and EHR3). Mean phage titer of above six phage isolates ranged between 3×1010 and 5×1012 plaque forming units/ml. Viability of phages was by, and large unaffected at 70°C within 2-3 min, and phage isolates were completely inactivated below pH 3 and above 11. Coliphage EHR1 had widest host range followed by BsHR1 and BsHR2 while EHR2, EHR3, and BsHR3 had low lytic activity. Conclusion: It could be concluded from the present study that the Bacillus and Coli phage has wide host range and thus exhibits the potential to be used as drug substitute tool against common bacterial pathogens.
Collapse
Affiliation(s)
- R K Shende
- Department of Veterinary Microbiology, College of Veterinary Science & Animal Husbandry, Anjora Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - S D Hirpurkar
- Department of Veterinary Microbiology, College of Veterinary Science & Animal Husbandry, Anjora Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - C Sannat
- Department of Veterinary Microbiology, College of Veterinary Science & Animal Husbandry, Anjora Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Nidhi Rawat
- Department of Veterinary Microbiology, College of Veterinary Science & Animal Husbandry, Anjora Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Vinay Pandey
- Department of Animal Nutrition, College of Veterinary Science & Animal Husbandry, Anjora, Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| |
Collapse
|
23
|
Sasikala D, Srinivasan P. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog 2016; 101:24-35. [PMID: 27793690 DOI: 10.1016/j.micpath.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
Vibrio alginolyticus is a leading cause of vibriosis, presenting opportunistic infections to humans associated with raw seafood contamination. At present, phage therapy that acts as an alternative sanitizing agent is explored for targeting V. alginolyticus. The study outcome revealed that the phage VP01 with its extreme lytic effect showed a high potential impact on the growth of V. alginolyticus as well as biofilm formation. Electron microscopy revealed the phage resemblance to Myoviridae, based on its morphology. Further study clarified that the phage VP01 possesses a broad host spectrum and amazing phage sensitivity at different pH, high thermal stability, and high burst size of 415 PFU/cell. In addition, the investigation of phage co-culturing against this pathogen resulted in a significant growth reduction even at less MOIs 0.1 and 1. These results suggest that the phage could be a promising candidate for the control of V. alginolyticus infections.
Collapse
Affiliation(s)
- Dakshinamurthy Sasikala
- Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Pappu Srinivasan
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
24
|
Li E, Yin Z, Ma Y, Li H, Lin W, Wei X, Zhao R, Jiang A, Yuan J, Zhao X. Identification and molecular characterization of bacteriophage phiAxp-2 of Achromobacter xylosoxidans. Sci Rep 2016; 6:34300. [PMID: 27669904 PMCID: PMC5037462 DOI: 10.1038/srep34300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
A novel Achromobacter xylosoxidans bacteriophage, phiAxp-2, was isolated from hospital sewage in China. The phage was morphologically and microbiologically characterized, and its one-step growth curve, host range, genomic sequence, and receptor were determined. Its morphology showed that phiAxp-2 belongs to the family Siphoviridae. Microbiological characterization demonstrated that pH 7 is most suitable for phage phiAxp-2; its titer decreased when the temperature exceeded 50 °C; phiAxp-2 is sensitive to ethanol and isopropanol; and the presence of calcium and magnesium ions is necessary to accelerate cell lysis and improve the formation of phiAxp-2 plaques. Genomic sequencing and a bioinformatic analysis showed that phage phiAxp-2 is a novel bacteriophage, consisting of a circular, double-stranded 62,220-bp DNA molecule with a GC content of 60.11% that encodes 86 putative open reading frames (ORFs). The lipopolysaccharide of A. xylosoxidans is involved in the adsorption of phiAxp-2.
Collapse
Affiliation(s)
- Erna Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yanyan Ma
- College of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Weishi Lin
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ruixiang Zhao
- College of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
25
|
Lal TM, Sano M, Ransangan J. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 2016; 56:872-88. [PMID: 26960780 DOI: 10.1002/jobm.201500611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future.
Collapse
Affiliation(s)
- Tamrin M Lal
- Microbiology and Fish Disease Laboratory, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Motohiko Sano
- Laboratory of Fish Pathology, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Julian Ransangan
- Microbiology and Fish Disease Laboratory, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|