1
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
2
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars? Front Cardiovasc Med 2022; 9:802783. [PMID: 35369316 PMCID: PMC8966230 DOI: 10.3389/fcvm.2022.802783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide; therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and efficient strategies to prevent and treat CCVDs, these are of great clinical and social significance. The discovery of nitric oxide (NO), as one of the endothelium-derived relaxing factors and its successful utilization in clinical practice for CCVDs, provides new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system by xenon, the key and common mechanisms of noble gases are involved in modulation of cell death and inflammatory or immune signals. Moreover, gases interaction and reduction in oxidative stress are emerging as the novel biological mechanisms of noble gases. Therefore, to investigate the precise actions of noble gases on redox signals, gases interaction, different cell death forms, and the emerging field of gasoimmunology, which focus on the effects of gas atoms/molecules on innate immune signaling or immune cells under both the homeostatic and perturbed conditions, these will help us to uncover the mystery of noble gases in modulating CCVDs.
Collapse
Affiliation(s)
- Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Weber NC, Preckel B. Gaseous mediators: an updated review on the effects of helium beyond blowing up balloons. Intensive Care Med Exp 2019; 7:73. [PMID: 31858285 PMCID: PMC6923303 DOI: 10.1186/s40635-019-0288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Noble gases, although supposed to be chemically inert, mediate numerous physiological and cellular effects, leading to protection against ischaemia-reperfusion injury in different organs. Clinically, the noble gas helium is used in treatment of airway obstruction and ventilation disorders in children and adults. In addition, studies from recent years in cells, isolated tissues, animals and finally humans show that helium has profound biological effects: helium applied before, during or after an ischaemic event reduced cellular damage, known as "organ conditioning", in some tissue, e.g. the myocardium. Although extensive research has been performed, the exact molecular mechanisms behind these organ-protective effects of helium are yet not completely understood. In addition, there are significant differences of protective effects in different organs and animal models. A translation of experimental findings to the clinical situation has yet not been shown.
Collapse
Affiliation(s)
- Nina C Weber
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Benedikt Preckel
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Ding YP, Zhang JY, Feng DX, Kong Y, Xu Z, Chen G. Advances in molecular mechanism of cardioprotection induced by helium. Med Gas Res 2017; 7:124-132. [PMID: 28744366 PMCID: PMC5510294 DOI: 10.4103/2045-9912.208519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helium has been classified as a kind of inert gas that is not effortless to spark chemical reactions with other substances in the past decades. Nevertheless, the cognition of scientists has gradually changed accompanied with a variety of studies revealing the potential molecular mechanism underlying organ-protection induced by helium. Especially, as a non-anesthetic gas which is deficient of relevant cardiopulmonary side effects, helium conditioning is recognized as an emerging and promising approach to exert favorable effects by mimicking the cardioprotection of anesthetic gases or xenon. In this review we will summarize advances in the underlying biological mechanisms and clinical applicability with regards to the cardioprotective effects of helium.
Collapse
Affiliation(s)
- Yi-Ping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott &White Clinic-Temple, Temple, TX, USA
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143,10.1038/srep46143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 04/01/2024] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
7
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
8
|
Flick M, Albrecht M, Oei GTML, Steenstra R, Kerindongo RP, Zuurbier CJ, Patel HH, Hollmann MW, Preckel B, Weber NC. Helium postconditioning regulates expression of caveolin-1 and -3 and induces RISK pathway activation after ischaemia/reperfusion in cardiac tissue of rats. Eur J Pharmacol 2016; 791:718-725. [PMID: 27742593 DOI: 10.1016/j.ejphar.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Caveolae, lipid enriched invaginations of the plasma membrane, are epicentres of cellular signal transduction. The structural proteins of caveolae, caveolins, regulate effector pathways in anaesthetic-induced cardioprotection, including the RISK pathway. Helium (He) postconditioning (HePoc) is known to mimic anaesthetic conditioning and to prevent damage from myocardial infarction. We hypothesize that HePoc regulates caveolin-1 and caveolin-3 (Cav-1 and Cav-3) expression in the rat heart and activates the RISK pathway. Male Wistar rats (n=8, each group) were subjected to 25min of cardiac ischaemia followed by reperfusion (I/R) for 5, 15 or 30min (I/R 5/15/30). The HePoc groups underwent I/R with 70% helium ventilation during reperfusion (IR+He 5/15/30min). Sham animals received surgical treatment without I/R. After each protocol blood and hearts were retrieved. Tissue was obtained from the area-at-risk (AAR) and non-area-at-risk (NAAR) and processed for western blot analyses and reverse-transcription-real-time-polymerase-chain-reaction (RT-qPCR). Protein analyses revealed increased amounts of Cav-1 and Cav-3 in the membrane of I/R+He15 (AAR: Cav-1, P<0.05; Cav-3, P<0.05; both vs. I/R15). In serum, Cav-3 was found to be elevated in I/R+He15 (P<0.05 vs. I/R15). RT-qPCR showed increased expression of Cav-1 in IR+He15 in AAR tissue (P<0.05 vs. I/R15). Phosphorylation of RISK pathway proteins pERK1/2 (AAR: P<0.05 vs. I/R15) and pAKT (AAR: P<0.05; NAAR P<0.05; both vs. I/R15) was elevated in the cytosolic fraction of I/R+He15. These results suggest that 15min of HePoc regulates Cav-1 and Cav-3 and activates RISK pathway kinases ERK1/2 and AKT. These processes might be crucially involved in HePoc mediated cardioprotection.
Collapse
Affiliation(s)
- Moritz Flick
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Gezina T M L Oei
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Renske Steenstra
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Raphaela P Kerindongo
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System and Department of Anaesthesiology, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, California, USA
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|