1
|
Liang M, Li Y, Dai T, Chen C. lncRNA FEZF1-AS1 regulates biological behaviors of cervical cancer by targeting miRNA-1254. Food Sci Nutr 2021; 9:4722-4737. [PMID: 34531986 PMCID: PMC8441442 DOI: 10.1002/fsn3.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
AIM The purpose of this research was to evaluate lncRNA FEZF1-AS1 in cervical cancer development and clinical significance. MATERIALS AND METHODS Collecting cervical cancer tissues, measuring FEZF1-AS1 expression, and analysis correlation between FEZF1-AS1 and prognosis. In cell vitro study, using MTT assay to measure cell proliferation, evaluating cell apoptosis by flow cytometry, measuring cell invasion and migration by Transwell and wound healing assay; lncRNA FEZF1-AS1 and miR-1254 gene expressions were evaluated by RT-qPCR assay; relative protein (Smurf1, E-cadherin, Vimentin, N-cadherin, AKT, p-AKT, c-Myc, and ZEB1) expressions were measured by Western blot assay. The correlation among FEZF1-AS1, miR-1254, and Smurf1 were analysis by dual luciferase reporter gene assay. RESULTS By clinical analysis, lncRNA FEZF1-AS1 was high expression in cervical cancer tissues and high expression was closely correlated with poor prognosis in cervical cancer patients. In vitro study, the SiHa and HeLa cell biologically including cell proliferation, migration, and invasion of si-FEZF1-AS1 group which knockdown lncRNA FEZF1-AS1 were significantly depressed (p < .001, respectively). However, with miR-1254 expression inhibiting, the cell biological activities were significantly increased in si-FEZF1-AS1+miRNA inhibitor groups (p < .001, respectively). CONCLUSION lncRNA FEZF1-AS1 might be an oncological role in cervical cancer; lncRNA FEZF1-AS1 knockdown had antitumor effects with miR-1254 activating in cervical cancer by in vitro study.
Collapse
Affiliation(s)
- Miao Liang
- Department of gynaecology and obstetricsChongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Yongkang Li
- Department of gynaecology and obstetricsChongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Tingting Dai
- Department of gynaecology and obstetricsChongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Cheng Chen
- Department of gynaecology and obstetricsChongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| |
Collapse
|
2
|
Zhang Y, Li X, Zhang J, Mao L. Circ-CCDC66 upregulates REXO1 expression to aggravate cervical cancer progression via restraining miR-452-5p. Cancer Cell Int 2021; 21:20. [PMID: 33407514 PMCID: PMC7789749 DOI: 10.1186/s12935-020-01732-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Cervical cancer is one most common cancer types among females over the world. While its underlying mechanisms remain unclear. Circ-CCDC66 has been revealed to participate in multiple biological functions, and contribute to various diseases’ progression. In the current study, we aimed to demonstrate the role of circ-CCDC66 in cervical cancer progression. Methods Real-time quantitative PCR (RT-qPCR) was conducted to measure the expression of circ-CCDC66, miR-452-5p, and REXO1 mRNA. Cell fractionation assay and RNA fluorescence in situ hybridization (FISH) were performed to locate circ-CCDC66 in cells. Cell account kit 8 (CCK-8) was used to detect cell proliferation ability. Transwell assay was applied to evaluate cell migration or invasion ability. Bioinformatics analysis, biotinylated RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays were conducted to assess the association between miR-452 and circ-CCDC66 or REXO1. Western blot was applied to measure the protein expression of REXO1. The animal tumor model was used to assess the effect of circ-CCDC66 in vivo. Results The expression of circ-CCDC66 was upregulated in cervical cancer tumor tissues in comparison with normal tissues, and correlated with later tumor stage and larger tumor size. Downregulated circ-CCDC66 inhibited cervical cancer cell proliferation, migration, and invasion. Circ-CCDC66 was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. MiR-452-5p directly targeted to REXO1. Circ-CCDC66 regulated REXO1 expression to modulate cervical cancer progression via miR-452-5p. Moreover, downregulated circ-CCDC66 was found to suppress tumor growth in vivo. Conclusion Our results demonstrated the role of circ-CCDC66/miR-452-5p/REXO1 axis in cervical cancer progression, we might provide novel therapeutic targets for cervical cancer clinical intervention.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Mao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Bai X, Wang W, Zhao P, Wen J, Guo X, Shen T, Shen J, Yang X. LncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression. Carcinogenesis 2020; 41:111-121. [PMID: 31605132 DOI: 10.1093/carcin/bgz166] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/25/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Studies have identified a series of lncRNAs that contributed to various tumors, although the underlying mechanisms remain largely unclear. We proposed a ceRNA network and investigate relations among lncRNA/miRNA/mRNA in cervical cancer (CC). The genes of differential expression and lncRNA/miRNA/mRNA network were identified by combining TCGA, miRcode, starBase, miRTarBase, miRDB, TargetScan and STRING databases. Meanwhile, the function enrichment was recognized with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Quantitative real time-PCR (qRT-PCR) was performed to determine colorectal neoplasia differentially expressed (CRNDE) expression in CC tissues and cell lines. The effects of CRNDE on the CC biological functions and cyclin B1 (CCNB1) expression were detected by conducting in vitro and in vivo experiments. Quantitative real time-PCR, western blot and dual-luciferase reporter assay were used to predict the target of miR-183. Furthermore, rescue experiments were conducted to further confirm the regulation of CCNB1 by CRNDE. Systematic analyses of bioinformatics from several databases predicted that CRNDE, miR-183 and CCNB1 were in the same network path. Their expressions were up-regulated in CC tissues and cells. Silencing CRNDE-inhibited cell proliferation, migration and invasion, restricted solid tumor growth and promoted cell apoptosis. Moreover, our results suggested that miR-183 targeted the CCNB1 3'UTR and regulated its expression. Additionally, miR-183 mimic could inverse the antitumor function of CRNDE inhibition and partially eliminated the attenuated expression of CCNB1 induced by silencing CRNDE, indicating that CRNDE could positively regulate CCNB1 expression by sponging miR-183. Our study highlighted a role for the CRNDE/miR-183/CCNB1-axis in CC and offered a promising diagnostic strategy for CC treatment.
Collapse
Affiliation(s)
- Xiaoxia Bai
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wendong Wang
- Hangzhou Guang Yu Yuan Medicine Technology Co, Ltd, Hangzou, China
| | - Peng Zhao
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jie Wen
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xuedong Guo
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tao Shen
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Junhua Shen
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiaofu Yang
- Department of Obstetrics, Women's Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Guo R, Qiao Y, Han L, Liu M. LncRNA NNT-AS1 contributes to the cisplatin resistance of cervical cancer through NNT-AS1/miR-186/HMGB1 axis. Cancer Cell Int 2020; 20:190. [PMID: 32489326 PMCID: PMC7247171 DOI: 10.1186/s12935-020-01278-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cisplatin (DDP) is a major chemotherapeutic drug which was widely used for cervical cancer (CC) patients with advanced or recurrent although its limitation in the development of resistance. LncRNA nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) has been reported to be involved in the DDP resistance. However, the role of NNT-AS1 in DDP resistance in CC remain unknown. Methods The mRNA expression of NNT-AS1, microRNA-186 (miR-186) and HMGB1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis abilities were measured via MTT assay or flow cytometry, respectively. Western blot was used to measure the expression level of HMGB1, Bax, Bcl-2, Cleaved-caspase 3, N-cadherin, Vimentin and E-cadherin. Cell migration and invasion abilities were analyzed using Transwell assay. The interaction among NNT-AS1, miR-186 and HMGB1 was confirmed by luciferase reporter assay and RNA pull-down assay. Murine xenograft model was established using stably transfected SiHa/DDP cells. Results NNT-AS1 level was significantly elevated in CC tissues and cells, especially in DDP-resistant tumors and cell lines. Subsequently, loss-of function assays indicated that NNT-AS1 silence could attenuate DDP resistance by inhibiting proliferation, metastasis and EMT but inducing apoptosis in DDP-resistant CC cells. Besides that, knockdown of NNT-AS1 also antagonized DDP resistance in vivo. Bioinformatics predication revealed NNT-AS1 directly bound to miR-186 and HMGB1 was a target of miR-186. Additionally, NNT-AS1 could regulate HMGB1 expression via targeting miR-186. Furthermore, restoration experiments showed NNT-AS1 knockdown might improve DDP-sensitivity of CC cells via blocking HMGB1 expression by competitive interaction with miR-186. Conclusion NNT-AS1 improved chemoresistance of DDP-resistant CC cells via modulating miR-186/HMGB1 axis.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052 China
| | - Ruixia Guo
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052 China
| | - Yuhuan Qiao
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052 China
| | - Liping Han
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052 China
| | - Mingzhu Liu
- Gynaecologic Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
5
|
Mao Y, Zhang L, Li Y. circEIF4G2 modulates the malignant features of cervical cancer via the miR‑218/HOXA1 pathway. Mol Med Rep 2019; 19:3714-3722. [PMID: 30896864 PMCID: PMC6471440 DOI: 10.3892/mmr.2019.10032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) serve important roles in tumorigenesis and may be used as novel molecular biomarkers for clinical diagnosis. However, the role and molecular mechanisms of circRNAs in cervical cancer (CC) remain unknown. In the present study, circRNA isoform of eukaryotic translation initiation factor 4γ2 (circEIF4G2) was revealed to be significantly upregulated in CC tissues and cell lines. Furthermore, increased expression of circEIF4G2 was associated with poor prognosis in patients with CC. circEIF4G2 knockdown suppressed the malignant features of CC cells, including cell proliferation, colony formation, migration and invasion. Additionally, circEIF4G2 was identified to serve as a sponge for microRNA-218 (miR-218), which targeted homeobox A1 (HOXA1). Furthermore, circEIF4G2 may increase the expression levels of HOXA1 by sponging miR-218. Rescue experiments suggested that transfection with a miR-218 inhibitor attenuated the inhibitory effects of circEIF4G2 knockdown on cell proliferation, migration and invasion. Furthermore, silencing HOXA1 reversed the effects of the miR-218 inhibitor on CC cells. Collectively, the present findings suggested that circEIF4G2 promoted cell proliferation and migration via the miR-218/HOXA1 pathway.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Gynecology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Liya Zhang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yuan Li
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
6
|
Feng LL, Shen FR, Zhou JH, Chen YG. Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene 2019; 696:105-112. [PMID: 30738960 DOI: 10.1016/j.gene.2019.01.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the expression of the lncRNA ZFAS1 in cervical cancer and its relationship with patient prognosis and cervical cancer cell chemosensitivity. METHODS The expression of ZFAS1 in cervical cancer tissues and cell lines was detected by qRT-PCR. The cervical cancer CaSki and the HeLa cell lines were transfected to be divided into Blank, siR-Control, and siR-ZFAS1 groups. MTT, wound-healing, and transwell assays were used to evaluate cell biological function. Cisplatin with different concentrations was used to treat cells in different transfection groups, and MTT assays were used to detect the cell growth inhibition rate and the half-inhibitory concentration (IC50) of cisplatin was measured. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was used to investigate the effects of siR-ZFAS1 on the chemosensitivity to cisplatin. RESULTS ZFAS1 was significantly upregulated in cervical cancer tissues and cell lines, and increased ZFAS1 levels led to poor prognoses in patients. In addition, cells in the siR-ZFAS1 group showed remarkably reduced ZFAS1 expression as well as cell proliferation, invasion and migration. After being treated with cisplatin at different concentrations, cells in the siR-ZFAS1 group had dramatically increased cell growth inhibition and apoptosis but lower cisplatin IC50s. In addition, siR-ZFAS1 reduced the volumes and weights of tumors in nude mice treated with cisplatin and enhanced the chemosensitivity of cervical cancer cells to cisplatin. CONCLUSION The lncRNA ZFAS1 was upregulated in cervical cancer tissues, and its high expression indicated a poor prognosis. Silencing ZFAS1 may inhibit cell proliferation, migration and invasion and enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Lan-Lan Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Fang-Rong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Jin-Hua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - You-Guo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China.
| |
Collapse
|
7
|
Cheng H. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells. Med Sci Monit 2016; 22:3328-33. [PMID: 27647179 PMCID: PMC5032850 DOI: 10.12659/msm.896731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. Material/Methods CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. Results CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. Conclusions These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity.
Collapse
Affiliation(s)
- Huawen Cheng
- Department of Oncology, People's Hospital of Xintai City, The Affiliated Xintai Hospital of Taishan Medical University, Xintai, Shandong, China (mainland)
| |
Collapse
|