1
|
Pallotti S, Antonini M, Napolioni V, Renieri C. Whole-genome sequencing of alpaca revealed variants in KIT gene potentially associated with the white coat phenotype. Anim Genet 2023; 54:816-817. [PMID: 37778745 DOI: 10.1111/age.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Stefano Pallotti
- Genomic and Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Marco Antonini
- Italian National Agency for New Technologies, Energy and Sustainable Development, Rome, Italy
| | - Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Carlo Renieri
- School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
| |
Collapse
|
2
|
More M, Veli E, Cruz A, Gutiérrez JP, Gutiérrez G, Ponce de León FA. Genome-Wide Association Study of Fiber Diameter in Alpacas. Animals (Basel) 2023; 13:3316. [PMID: 37958071 PMCID: PMC10648856 DOI: 10.3390/ani13213316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was the identification of candidate genomic regions associated with fiber diameter in alpacas. DNA samples were collected from 1011 female Huacaya alpacas from two geographical Andean regions in Peru (Pasco and Puno), and three alpaca farms within each region. The samples were genotyped using an Affymetrix Custom Alpaca genotyping array containing 76,508 SNPs. After the quality controls, 960 samples and 51,742 SNPs were retained. Three association study methodologies were performed. The GWAS based on a linear model allowed us to identify 11 and 35 SNPs (-log10(p-values) > 4) using information on all alpacas and alpacas with extreme values of fiber diameter, respectively. The haplotype and marker analysis method allowed us to identify nine haplotypes with standardized haplotype heritability higher than six standard deviations. The selection signatures based on cross-population extended haplotype homozygosity (XP-EHH) allowed us to identify 180 SNPs with XP-EHH values greater than |3|. Four candidate regions with adjacent SNPs identified via two association methods of analysis are located on VPA6, VPA9, VPA29 and one chromosomally unassigned scaffold. This study represents the first analysis of alpaca whole genome association with fiber diameter, using a recently assembled alpaca SNP microarray.
Collapse
Affiliation(s)
- Manuel More
- Facultad de Agronomía y Zootecnia, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru;
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (A.C.); (F.A.P.d.L.)
| | - Eudosio Veli
- Centro Experimental La Molina, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru;
| | - Alan Cruz
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (A.C.); (F.A.P.d.L.)
- Estación Científica de Pacomarca, Inca Tops S.A., Arequipa 04007, Peru
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Gustavo Gutiérrez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (A.C.); (F.A.P.d.L.)
- Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| | - F. Abel Ponce de León
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (A.C.); (F.A.P.d.L.)
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, USA
| |
Collapse
|
3
|
Melo Rojas C, Bravo Matheus PW, Zapata Coacalla C, Lopez Durand V, Melo Anccasi M. MC1R Gene Variants and Their Relationship with Coat Color in South American Camelids. ScientificWorldJournal 2023; 2023:4871135. [PMID: 37786645 PMCID: PMC10541998 DOI: 10.1155/2023/4871135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
In domestic camelids, fleece color is an essential characteristic because it defines the direction of production. Variants were determined in the MC1R gene that showed a relationship with coat color in alpacas and llamas at the level of the coding region. This report sequenced the MC1R gene from 290 alpacas (142 white, 84 black, 50 brown, and 14 light fawn), five brown llamas, nine vicuñas, and three guanacos to analyze the association between coat color and the MC1R gene among South American camelids. A total of nineteen polymorphisms were identified. Seven polymorphisms were significant; three of them were of nonsynonymous type (c.82A > G, c.376G > A, and c.901C > T), two were of synonymous type (c.126 T > C and c.933G > A), one was in the promoter region (-42C > G), and one was in the 3' UTR (+5T > C). More polymorphisms were found in domestic camelids than in wild camelids. Besides polymorphism, the association of polymorphisms might cause white and dark pigmentation in the fleece of South American camelids. In addition, the MC1R protein would answer the pigmentation in alpacas.
Collapse
Affiliation(s)
- Carola Melo Rojas
- Laboratorio de Genetica, Escuela Profesional de Medicina Veterinaria Canchis, National University of Saint Anthony the Abbot in Cuzco, Cusco, Peru
| | - P. Walter Bravo Matheus
- Laboratorio de Genetica, Escuela Profesional de Medicina Veterinaria Canchis, National University of Saint Anthony the Abbot in Cuzco, Cusco, Peru
| | - Celso Zapata Coacalla
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno, Peru
| | - Victor Lopez Durand
- Laboratorio de Genetica, Escuela Profesional de Medicina Veterinaria Canchis, National University of Saint Anthony the Abbot in Cuzco, Cusco, Peru
| | - Maximo Melo Anccasi
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno, Peru
| |
Collapse
|
4
|
Calderon M, More MJ, Gutierrez GA, Ponce de León FA. Development of a 76k Alpaca ( Vicugna pacos) Single Nucleotide Polymorphisms (SNPs) Microarray. Genes (Basel) 2021; 12:genes12020291. [PMID: 33669871 PMCID: PMC7923280 DOI: 10.3390/genes12020291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Small farm producers’ sustenance depends on their alpaca herds and the production of fiber. Genetic improvement of fiber characteristics would increase their economic benefits and quality of life. The incorporation of molecular marker technology could overcome current limitations for the implementation of genetic improvement programs. Hence, the aim of this project was the generation of an alpaca single nucleotide polymorphism (SNP) microarray. A sample of 150 Huacaya alpacas from four farms, two each in Puno and Cerro de Pasco were used for SNP discovery by genotyping by sequencing (GBS). Reduced representation libraries, two per animal, were produced after DNA digestion with ApeK1 and double digestion with Pst1-Msp1. Ten alpaca genomes, sequenced at depths between 12× to 30×, and the VicPac3.1 reference genome were used for read alignments. Bioinformatics analysis discovered 76,508 SNPs included in the microarray. Candidate genes SNPs (302) for fiber quality and color are also included. The microarray SNPs cover 90.5% of the genome length with a density of about 39 ± 2.51 SNPs/Mb of DNA at an average interval of 26.45 ± 18.57 kbp. The performance was evaluated by genotyping 30 family trios and comparing them to their pedigrees, as well as comparing microarray to GBS genotypes. Concordance values of 0.93 and 0.94 for ApeK1 and Pst1-Msp1 generated SNPs were observed. Similarly, 290 fiber quality and color candidate gene SNPs were validated. Availability of this microarray will facilitate genome-wide association studies, marker-assisted selection and, in time, genomic selection.
Collapse
Affiliation(s)
- Marcos Calderon
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (M.C.); (M.J.M.); (G.A.G.)
- Escuela de Formación Profesional de Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Nacional Daniel Alcídes Carrión, Cerro de Pasco 19001, Peru
| | - Manuel J. More
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (M.C.); (M.J.M.); (G.A.G.)
| | - Gustavo A. Gutierrez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15024, Peru; (M.C.); (M.J.M.); (G.A.G.)
| | - Federico Abel Ponce de León
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, USA
- Correspondence: ; Tel.: +1-612-419-7870
| |
Collapse
|
5
|
Pallotti S, Chandramohan B, Pediconi D, Nocelli C, La Terza A, Renieri C. Interaction between the melanocortin 1 receptor (MC1R) and agouti signalling protein genes (ASIP), and their association with black and brown coat colour phenotypes in peruvian alpaca. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1850216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Stefano Pallotti
- Scuola di Scienze del Farmaco e dei Prodotti della salute, University of Camerino, Camerino, Italy
| | | | - Dario Pediconi
- Scuola di Scienze del Farmaco e dei Prodotti della salute, University of Camerino, Camerino, Italy
| | - Cristina Nocelli
- Scuola di Scienze del Farmaco e dei Prodotti della salute, University of Camerino, Camerino, Italy
| | - Antonietta La Terza
- Scuola di Bioscienze e Medicina Veterinaria, University of Camerino, Camerino, Italy
| | - Carlo Renieri
- Scuola di Scienze del Farmaco e dei Prodotti della salute, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Reiner G, Weber T, Nietfeld F, Fischer D, Wurmser C, Fries R, Willems H. A genome-wide scan study identifies a single nucleotide substitution in MC1R gene associated with white coat colour in fallow deer (Dama dama). BMC Genet 2020; 21:126. [PMID: 33213385 PMCID: PMC7678172 DOI: 10.1186/s12863-020-00950-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The coat colour of fallow deer is highly variable and even white animals can regularly be observed in game farming and in the wild. Affected animals do not show complete albinism but rather some residual pigmentation resembling a very pale beige dilution of coat colour. The eyes and claws of the animals are pigmented. To facilitate the conservation and management of such animals, it would be helpful to know the responsible gene and causative variant. We collected 102 samples from 22 white animals and from 80 animals with wildtype coat colour. The samples came from 12 different wild flocks or game conservations located in different regions of Germany, at the border to Luxembourg and in Poland. The genomes of one white hind and her brown calf were sequenced. Results Based on a list of colour genes of the International Federation of Pigment Cell Societies (http://www.ifpcs.org/albinism/), a variant in the MC1R gene (NM_174108.2:c.143 T > C) resulting in an amino acid exchange from leucine to proline at position 48 of the MC1R receptor protein (NP_776533.1:p.L48P) was identified as a likely cause of coat colour dilution. A gene test revealed that all animals of the white phenotype were of genotype CC whereas all pigmented animals were of genotype TT or TC. The study showed that 14% of the pigmented (brown or dark pigmented) animals carried the white allele. Conclusions A genome-wide scan study led to a molecular test to determine the coat colour of fallow deer. Identification of the MC1R gene provides a deeper insight into the mechanism of dilution. The gene marker is now available for the conservation of white fallow deer in wild and farmed animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00950-3.
Collapse
Affiliation(s)
- Gerald Reiner
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany. .,Arbeitskreis Wildbiologie e.V., Justus-Liebig-University, Giessen, Germany.
| | - Tim Weber
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| | - Florian Nietfeld
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| | - Dominik Fischer
- Arbeitskreis Wildbiologie e.V., Justus-Liebig-University, Giessen, Germany
| | - Christine Wurmser
- Department of Animal Breeding, Technical University of Munich, Liesel-Beckmann-Strasse 1, D-85354, Freising-Weihenstephan, Germany
| | - Ruedi Fries
- Department of Animal Breeding, Technical University of Munich, Liesel-Beckmann-Strasse 1, D-85354, Freising-Weihenstephan, Germany
| | - Hermann Willems
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| |
Collapse
|
7
|
Anello M, Fernández E, Daverio MS, Vidal-Rioja L, Di Rocco F. TYR Gene in Llamas: Polymorphisms and Expression Study in Different Color Phenotypes. Front Genet 2019; 10:568. [PMID: 31249599 PMCID: PMC6582663 DOI: 10.3389/fgene.2019.00568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Tyrosinase, encoded by TYR gene, is an enzyme that plays a major role in mammalian pigmentation. It catalyzes the oxidation of L-dihydroxy-phenylalanine (DOPA) to DOPA quinone, a precursor of both types of melanin: eumelanin and pheomelanin. TYR is commonly known as the albino locus since mutations in this gene result in albinism in several species. However, many other TYR mutations have been found to cause diluted phenotypes, like the Himalayan or chinchilla phenotypes in mice. The llama (Lama glama) presents a wide variety of coat colors ranging from non-diluted phenotypes (eumelanic and pheomelanic), through different degrees of dilution, to white. To investigate the possible contribution of TYR gene to coat color variation in llamas, we sequenced TYR exons and their flanking regions and genotyped animals with diluted, non-diluted, and white coat, including three blue-eyed white individuals. Moreover, we analyzed mRNA expression levels in skin biopsies by qPCR. TYR coding region presented nine SNPs, of which three were non-synonymous, c.428A > G, c.859G > T, and c.1490G > T. We also identified seven polymorphisms in non-coding regions, including two microsatellites, an homopolymeric repeat, and five SNPs: one in the promoter region (c.1-26C > T), two in the 3'-UTR, and two flanking the exons. Although no complete association was found between coat color and SNPs, c.1-26C > T was partially associated to diluted phenotypes. Additionally, the frequency of the G allele from c.428A > G was significantly higher in white compared to non-diluted. Results from qPCR showed that expression levels of TYR in white llamas were significantly lower (p < 0.05) than those in diluted and non-diluted phenotypes. Screening for variation in regulatory regions of TYR did not reveal polymorphisms that explain such differences. However, data from this study showed that TYR expression levels play a role in llama pigmentation.
Collapse
Affiliation(s)
- Melina Anello
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular, CONICET-UNLP-CIC, La Plata, Argentina
| | - Estefanía Fernández
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular, CONICET-UNLP-CIC, La Plata, Argentina
| | - María Silvana Daverio
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular, CONICET-UNLP-CIC, La Plata, Argentina.,Cátedra de Biología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lidia Vidal-Rioja
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular, CONICET-UNLP-CIC, La Plata, Argentina
| | - Florencia Di Rocco
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular, CONICET-UNLP-CIC, La Plata, Argentina
| |
Collapse
|
8
|
More M, Gutiérrez G, Rothschild M, Bertolini F, Ponce de León FA. Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip. Front Genet 2019; 10:361. [PMID: 31105741 PMCID: PMC6492526 DOI: 10.3389/fgene.2019.00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genomic selection to accelerate genetic gain. To achieve this is necessary to discover enough molecular markers, single nucleotide polymorphisms (SNPs) in particular, to provide genome coverage and facilitate genome wide association studies to fiber production characteristics. The aim of this study was to discover alpaca SNPs by genotyping forty alpaca DNA samples using the BovineHD Genotyping Beadchip. Data analysis was performed with GenomeStudio (Illumina) software. Because different filters and thresholds are reported in the literature we investigated the effects of no-call threshold (≥0.05, ≥0.15, and ≥0.25) and call frequency (≥0.9 and =1.0) in identifying positive SNPs. Average GC Scores, calculated as the average of the 10% and 50% GenCall scores for each SNP (≥0.70) and the GenTrain score ≥ 0.25 parameters were applied to all comparisons. SNPs with minor allele frequency (MAF) ≥ 0.05 or ≥ 0.01 were retained. Since detection of SNPs is based on the stable binding of oligonucleotide probes to the target DNA immediately adjacent to the variant nucleotide, all positive SNP flanking sequences showing perfect alignments between the bovine and alpaca genomes for the first 21 or 26 nucleotides flanking the variant nucleotide at either side were selected. Only SNPs localized in one scaffold were assumed unique. Unique SNPs identified in both reference genomes were kept and mapped on the Vicugna_pacos 2.0.2 genome. The effects of the no-call threshold ≥ 0.25, call frequency = 1 and average GC ≥ 0.7 were meaningful and identified 6756 SNPs of which 400 were unique and polymorphic (MAF ≥ 0.01). Assignment to alpaca chromosomes was possible for 292 SNPs. Likewise, 209 SNPs were localized in 202 alpaca gene loci and 29 of these share the same loci with the dromedary. Interestingly, 69 of 400 alpaca SNPs have 100% similarity with dromedary.
Collapse
Affiliation(s)
- Manuel More
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Gustavo Gutiérrez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Francesca Bertolini
- National Institute of Aquatic Resources, DTU-Aqua, Technical University of Denmark, Lyngby, Denmark
| | - F Abel Ponce de León
- Department of Animal Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Alshanbari F, Castaneda C, Juras R, Hillhouse A, Mendoza MN, Gutiérrez GA, Ponce de León FA, Raudsepp T. Comparative FISH-Mapping of MC1R, ASIP, and TYRP1 in New and Old World Camelids and Association Analysis With Coat Color Phenotypes in the Dromedary ( Camelus dromedarius). Front Genet 2019; 10:340. [PMID: 31040864 PMCID: PMC6477024 DOI: 10.3389/fgene.2019.00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Melanocortin 1 receptor (MC1R), the agouti signaling protein (ASIP), and tyrosinase related protein 1 (TYRP1) are among the major regulators of pigmentation in mammals. Recently, MC1R and ASIP sequence variants were associated with white and black/dark brown coat colors, respectively, in the dromedary. Here we confirmed this association by independent sequencing and mutation discovery of MC1R and ASIP coding regions and by TaqMan genotyping in 188 dromedaries from Saudi Arabia and United States, including 38 black, 53 white, and 97 beige/brown/red animals. We showed that heterozygosity for a missense mutation c.901C > T in MC1R is sufficient for the white coat color suggesting a possible dominant negative effect. Likewise, we confirmed that the majority of black dromedaries were homozygous for a frameshift mutation in ASIP exon 2, except for 4 animals, which were heterozygous. In search for additional mutations underlying the black color, we identified another frameshift mutation in ASIP exon 4 and 6 new variants in MC1R including a significantly associated SNP in 3'UTR. In pursuit of sequence variants that may modify dromedary wild-type color from dark-reddish brown to light beige, we identified 4 SNPs and one insertion in TYRP1 non-coding regions. However, none of these were associated with variations in wild-type colors. Finally, the three genes were cytogenetically mapped in New World (alpaca) and Old World (dromedary and Bactrian camel) camelids. The MC1R was assigned to chr21, ASIP to chr19 and TYRP1 to chr4 in all 3 species confirming extensive conservation of camelid karyotypes. Notably, while the locations of ASIP and TYRP1 were in agreement with human-camelid comparative map, mapping MC1R identified a new evolutionary conserved synteny segment between camelid chromosome 21 and HSA16. The findings contribute to coat color genomics and the development of molecular tests in camelids and toward the chromosome level reference assemblies of camelid genomes.
Collapse
Affiliation(s)
- Fahad Alshanbari
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Hillhouse
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Mayra N. Mendoza
- Animal Breeding Program, National Agrarian University La Molina, Lima, Peru
| | | | | | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Pallotti S, Pediconi D, Subramanian D, Molina MG, Antonini M, Morelli MB, Renieri C, La Terza A. Evidence of post-transcriptional readthrough regulation in FGF5 gene of alpaca. Gene 2018; 647:121-128. [PMID: 29307854 DOI: 10.1016/j.gene.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/23/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023]
Abstract
Two different phenotypes are described in alpaca, identified as suri and huacaya, which differ in the type of fleece. The huacaya fleece is characterized by compact, soft and highly crimped fibers, while the suri fleece is longer, straight, less-crimped and lustrous. In our study, the Fibroblast growth factor 5 (FGF5) was investigated as a possible candidate gene for hair length in alpaca (Vicugna pacos). As previously identified in other mammals, our results show that the alpaca FGF5 gene gives rise to a short (FGF5S) and a long (FGF5) isoform. Interestingly, in the long isoform, we observed a point mutation (i.e., a transition C>T at position 499 downstream of the ATG codon) that is able to generate a premature termination codon (PTC). The highly conserved nucleotide and amino acid sequence after PTC suggested a readthrough event (RT) that was confirmed by western blot analysis. The analysis of cDNA sequence revealed motifs and structures of mRNA undergoing RT. In fact, the event is positively influenced by particular signals harbored by the transcript. To the best of our knowledge, this is the first case of a readthrough event on PTC reported for the FGF5 gene and the first case of this translational mechanism in alpaca.
Collapse
Affiliation(s)
- Stefano Pallotti
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy.
| | - Dario Pediconi
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy.
| | | | - María Gabriela Molina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Argentina
| | - Marco Antonini
- ENEA C.R. Casaccia Biotec-Agro, S.M. di Galeria, 00060 Roma, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy
| | - Carlo Renieri
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy
| | - Antonietta La Terza
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy.
| |
Collapse
|
11
|
Polymorphisms in MC1R and ASIP genes and their association with coat color phenotypes in llamas (Lama glama). Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|