1
|
Mânica da Cruz IB, Chelotti ME, Turra BO, Cardoso de Afonso Bonotto N, Pulcinelli DF, Kerkhoff Escher AL, Klein C, de Azevedo Mello P, Bitencourt GR, Barbisan F. Achyrocline satureioides infusion, popularly prepared and consumed, has an in vitro protective effect on human neural cells exposed to rotenone. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118350. [PMID: 38763375 DOI: 10.1016/j.jep.2024.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 μL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 μg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 μl/mL, AS decreased apoptotic events, whereas the highest concentration (300 μl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Maria Eduarda Chelotti
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Barbara Osmarin Turra
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Débora Felipetto Pulcinelli
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Laura Kerkhoff Escher
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Caroline Klein
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paola de Azevedo Mello
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gustavo Rossato Bitencourt
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Abstract
Objective: Oral cancer presents as a devastating type of malignancy. It is predominant in populations with high use of alcohol and various forms of tobacco as well as poor diets with low intake of fruits and vegetables. The present study focused on the potential of Garcinone E to inhibit HSC-4 oral cancer cell proliferation, migration and invasion. Methods: MTT and colony forming assays were performed to study antiproliferative effects of Garcinone E. Hoechst staining was used to determine levels of apoptosis, with cell invasion and scratch assays conducted for migration and invasion characteristics. The levels of MMPs and cytokines were quantified in Garcinone E treated cells by ELISA. Results: Garcinone E inhibited the proliferation and colony forming potential of HSC-4 cells. It also suppressed migration and invasion with inhibition of MMP-2 and MMP-9 expression. Moreover, it elevated IL-2 and reduced IL-6 expression in HSC-4 cells. Conclusion: Our results demonstrate for the first time that Garcinone E might inhibit metastasis of an oral cancer cell line by blocking invasion, migration and MMP production.
Collapse
Affiliation(s)
- Sheeja K
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre, Medical College, Thiruvanananthapuram, Kerala, India.
| | | |
Collapse
|
4
|
Chen W, Su H, Xu Y, Jin C. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Sci Rep 2017; 7:40514. [PMID: 28084406 PMCID: PMC5233992 DOI: 10.1038/srep40514] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/06/2016] [Indexed: 12/04/2022] Open
Abstract
Acrylamide (AA)-induced toxicity has been associated with accumulation of excessive reactive oxygen species. The present study was therefore undertaken to investigate the protective effect of blackberry digests produced after (BBD) in vitro gastrointestinal (GI) digestion against AA-induced oxidative damage. The results indicated that the BBD (0.5 mg/mL) pretreatment significantly suppressed AA-induced intracellular ROS generation (56.6 ± 2.9% of AA treatment), mitochondrial membrane potential (MMP) decrease (297 ± 18% of AA treatment) and glutathione (GSH) depletion (307 ± 23% of AA treatment), thereby ameliorating cytotoxicity. Furthermore, LC/MS/MS analysis identified eight phenolic compounds with high contents in BBD, including ellagic acid, ellagic acid pentoside, ellagic acid glucuronoside, methyl-ellagic acid pentoside, methyl-ellagic acid glucuronoside, cyanidin glucoside, gallic acid and galloyl esters, as primary active compounds responsible for antioxidant action. Collectively, our study uncovered that the protective effect of blackberry was reserved after gastrointestinal digestion in combating exogenous pollutant-induced oxidative stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Chao Jin
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Wild Raspberry Subjected to Simulated Gastrointestinal Digestion Improves the Protective Capacity against Ethyl Carbamate-Induced Oxidative Damage in Caco-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3297363. [PMID: 26788245 PMCID: PMC4696417 DOI: 10.1155/2016/3297363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
Abstract
Ethyl carbamate (EC), a probable human carcinogen, occurs widely in many fermented foods. Previous studies indicated that EC-induced cytotoxicity was associated with oxidative stress. Wild raspberries are rich in polyphenolic compounds, which possess potent antioxidant activity. This study was conducted to investigate the protective effect of wild raspberry extracts produced before (RE) and after in vitro simulated gastrointestinal digestion (RD) on EC-induced oxidative damage in Caco-2 cells. Our primary data showed that ethyl carbamate could result in cytotoxicity and genotoxicity in Caco-2 cells and raspberry extract after digestion (RD) may be more effective than that before digestion (RE) in attenuating toxicity caused by ethyl carbamate. Further investigation by fluorescence microscope revealed that RD may significantly ameliorate EC-induced oxidative damage by scavenging the overproduction of intracellular reactive oxygen species (ROS), maintaining mitochondrial function and preventing glutathione (GSH) depletion. In addition, HPLC-ESI-MS results showed that the contents of identified polyphenolic compounds (esculin, kaempferol O-hexoside, and pelargonidin O-hexoside) were remarkably increased after digestion, which might be related to the better protective effect of RD. Overall, our results demonstrated that raspberry extract undergoing simulated gastrointestinal digestion may improve the protective effect against EC-induced oxidative damage in Caco-2 cells.
Collapse
|