1
|
Aughton K, Sabat-Pośpiech D, Barlow S, Coupland SE, Kalirai H. Investigating the Role of DUSP4 in Uveal Melanoma. Transl Vis Sci Technol 2022; 11:13. [PMID: 36576731 PMCID: PMC9804032 DOI: 10.1167/tvst.11.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Dual-specificity phosphatase 4 (DUSP4) inactivates factors in the mitogen-activated protein kinase (MAPK) signaling cascade, activated in uveal melanoma (UM) by mutations in upstream G-protein α subunits GNAQ/11 in >90% cases. This study examined whether DUSP4 (1) protein expression in primary UM (pUM) was a biomarker of metastatic risk and (2) knockdown sensitized UM cells to therapeutic agents, selumetinib or doxorubicin. Methods DUSP4 mRNA data from The Cancer Genome Atlas and DUSP4 protein expression examined using immunohistochemistry in 28 cases of pUM were evaluated for association with clinical, genetic, and histological features. In vitro cytotoxic drug assays tested the efficacy of selumetinib and doxorubicin in UM cell lines with/without small interfering RNA DUSP4 gene silencing. Results DUSP4 protein expression was observed in 93% of cases, with strong nuclear positivity in 79%. Despite higher DUSP4 messenger RNA levels in disomy 3/wild-type BAP1 UM, there was no significant association of nDUSP4 protein with these metastatic risk predictors or outcome. DUSP4 expression in UM cell lines varied. DUSP4 silencing in Mel202, MP46, and MP41 cells did not affect ERK1/2 or phospho-ERK levels. Despite increased phospho-ERK levels in Mel285, no cell line showed enhanced sensitivity to selumetinib/doxorubicin. Conclusions DUSP4 protein expression is not a biomarker of UM metastatic risk. DUSP4 plays a complex role in oncogenesis, as reported in other cancers, and further work is required to fully understand its functional role in the MAPK pathway. Translational Relevance Understanding the role of phosphatases, such as DUSP4, in the control of intracellular signaling cascades will facilitate our ability to identify successful treatment options.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Barlow
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Bayrak T, Çetin Z, Saygılı Eİ, Ogul H. Identifying the tumor location-associated candidate genes in development of new drugs for colorectal cancer using machine-learning-based approach. Med Biol Eng Comput 2022; 60:2877-2897. [DOI: 10.1007/s11517-022-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
3
|
Varela T, Conceição N, Laizé V, Cancela ML. Transcriptional regulation of human DUSP4 gene by cancer-related transcription factors. J Cell Biochem 2021; 122:1556-1566. [PMID: 34254709 DOI: 10.1002/jcb.30078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is responsible for the dephosphorylation and inactivation of ERK, JNK and p38, which are mitogen-activated protein kinases involved in cell proliferation, differentiation and apoptosis, but also in inflammation processes. Given its importance for cellular signalling, DUSP4 is subjected to a tight regulation and there is growing evidence that its expression is dysregulated in several tumours. However, the mechanisms underlying DUSP4 transcriptional regulation remain poorly understood. Here, we analysed the regulation of the human DUSP4 promoters 1 and 2, located upstream of exons 1 and 2, respectively, by the cancer-related transcription factors (TFs) STAT3, FOXA1, CTCF and YY1. The presence of binding sites for these TFs was predicted in both promoters through the in silico analysis of DUSP4, and their functionality was assessed through luciferase activity assays. Regulatory activity of the TFs tested was found to be promoter-specific. While CTCF stimulated the activity of promoter 2 that controls the transcription of variants 2 and X1, STAT3 stimulated the activity of promoter 1 that controls the transcription of variant 1. YY1 positively regulated both promoters, although to different extents. Through site-directed mutagenesis, the functionality of YY1 binding sites present in promoter 2 was confirmed. This study provides novel insights into the transcriptional regulation of DUSP4, contributing to a better comprehension of the mechanisms of its dysregulation observed in several types of cancer.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
4
|
Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, Kipling N, Clarke K, Figueiredo CR, Kalirai H, Coupland SE. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102832. [PMID: 33008022 PMCID: PMC7650807 DOI: 10.3390/cancers12102832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies. Abstract Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an “immunoscore” (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions.
Collapse
Affiliation(s)
- Yamini Krishna
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Amelia Acha-Sagredo
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Natalie Kipling
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Kim Clarke
- Computational Biology Facility, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Carlos R. Figueiredo
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turun yliopisto, FI-20014 Turku, Finland;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Sarah E. Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
- Correspondence: ; Tel.: +44-151-794-9104
| |
Collapse
|
5
|
Xu W, Chen B, Ke D, Chen X. DUSP4 directly deubiquitinates and stabilizes Smad4 protein, promoting proliferation and metastasis of colorectal cancer cells. Aging (Albany NY) 2020; 12:17634-17646. [PMID: 32897241 PMCID: PMC7521518 DOI: 10.18632/aging.103823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Colorectal cancer is a common health-threatening tumor within the gastrointestinal tract. The aim of this study was to test the biological role of DUSP4 in colorectal cancer cells. In our study, DUSP4 overexpression-treated HCT116 cells and DUSP4 knockdown-treated SW480 cells were selected to perform study. Quantitative real-time PCR test (qRT-PCR) and western blot were used to detect DUSP4 abundance in clinical tissues and six cell lines, as well as ubiquitin-related Smad4 degradation. Western blot, migration and invasion. were used to assess the relationships between DUSP4 and Smad4. Higher DUSP4 expression of functional significance was observed in colorectal cancer tissues and cells. The results showed that both treatments could affect the proliferation, colony formation, migration, invasion of tumor cells, and the expression of epithelial mesenchymal transformation (EMT)-associated biomarkers. Moreover, in colorectal cancer cells, DUSP4 could promote the Smad4 degradation by regulating ubiquitin-related Smad4 degradation, and promote the cell proliferation, migration and invasion by regulating Smad4 degradation via Smad4 gene. Meanwhile, DUSP4 can directly deubiquitinate and stabilize Smad4 protein, hence further promote proliferation and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Dianshan Ke
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| |
Collapse
|
6
|
Varela T, Laizé V, Conceição N, Caldeira P, Marreiros A, Guerreiro H, Cancela ML. Expression of DUSP4 transcript variants as a potential biomarker for colorectal cancer. Biomark Med 2020; 14:639-650. [DOI: 10.2217/bmm-2019-0369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To provide novel data on the expression of DUSP4 transcripts in colorectal cancer (CRC) tissues and to explore their potential as biomarkers. Materials & methods: DUSP4 transcripts expression was determined by quantitative real-time PCR in tissues from 28 CRC patients. Their association with clinicopathological factors and survival analysis was performed. Data from 380 CRC patients available at The Cancer Genome Atlas project were also analyzed. Results: All transcripts were overexpressed in CRC tissues. Variant X1 was the most upregulated and associated with KRAS mutations and poorly differentiated tumor. Overexpression of DUSP4 transcripts could distinguish all tumor stages from normal tissues. Similar results were found in The Cancer Genome Atlas cohort. Conclusion: DUSP4 transcripts have the potential to serve as diagnostic biomarkers for CRC, particularly variant X1.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- PhD in Biomedical Sciences, Department of Biomedical Sciences & Medicine, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences & Medicine, University of Algarve, Faro, Portugal
- Algarve Biomedical Centre, University of Algarve, Faro, Portugal
| | - Paulo Caldeira
- Department of Gastroenterology, Algarve’s University Hospital Centre, Faro, Portugal
| | - Ana Marreiros
- Department of Biomedical Sciences & Medicine, University of Algarve, Faro, Portugal
- Algarve Biomedical Centre, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Horácio Guerreiro
- Department of Gastroenterology, Algarve’s University Hospital Centre, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences & Medicine, University of Algarve, Faro, Portugal
- Algarve Biomedical Centre, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| |
Collapse
|
7
|
Raglan O, Assi N, Nautiyal J, Lu H, Gabra H, Gunter MJ, Kyrgiou M. Proteomic analysis of malignant and benign endometrium according to obesity and insulin-resistance status using Reverse Phase Protein Array. Transl Res 2020; 218:57-72. [PMID: 31954096 DOI: 10.1016/j.trsl.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Obesity and hyperinsulinemia are known risk factors for endometrial cancer, yet the biological pathways underlying this relationship are incompletely understood. This study investigated protein expression in endometrial cancer and benign tissue and its correlation with obesity and insulin resistance. One hundred and seven women undergoing hysterectomy for endometrial cancer or benign conditions provided a fasting blood sample and endometrial tissue. We performed proteomic expression according to body mass index, insulin resistance, and serum marker levels. We used linear regression and independent t test for statistical analysis. Proteomic data from 560 endometrial cancer cases from The Cancer Genome Atlas (TCGA) databank were used to assess reproducibility of results. One hundred and twenty seven proteins were significantly differentially expressed between 66 cancer and 26 benign patients. Protein expression involved in cell cycle progression, impacting cytoskeletal dynamics (PAK1) and cell survival (Rab 25), were most significantly altered. Obese women with cancer had increased PRAS40_pT246; a downstream marker of increased PI3K-AKT signaling. Obese women without cancer had increased mitogenic and antiapoptotic signaling by way of upregulation of Mcl-1, DUSP4, and Insulin Receptor-b. This exploratory study identified a number of candidate proteins specific to endometrioid endometrial cancer and benign endometrial tissues. Obesity and insulin resistance in women with benign endometrium leads to specific upregulation of proteins involved in insulin and driver oncogenic signaling pathways such as the PI3K-AKT-mTOR and growth factor signaling pathways which are mitogenic and also disruptive to metabolism.
Collapse
Affiliation(s)
- Olivia Raglan
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Nada Assi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Haonan Lu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Maria Kyrgiou
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
8
|
Kim H, Shin S, Kim Y, Bang S, Park S, Jee S, Sim J, Jang K, Paik S. The clinicopathologic significance of extranodal tumor extension in locally advanced (pT3) colorectal adenocarcinoma and its association with the loss of E-cadherin expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3417-3425. [PMID: 31934185 PMCID: PMC6949839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
We investigated the clinicopathologic significance of extranodal tumor extension (ENTE) in locally advanced and prognostically inhomogeneous pT3 (pathologic T3) colorectal adenocarcinomas with regional lymph node metastasis. ENTE is defined as an interruption of the nodal capsule by tumor cells with extranodal growth. ENTE was observed in 46.3% of pT3 colorectal adenocarcinomas and was significantly associated with vascular invasion (P = 0.037, chi-square test), tumor deposit (P = 0.004, chi-square test) and high pN (pathologic N) stage (P = 0.002, chi-square test). An immunohistochemical study revealed that the loss of E-cadherin was significantly associated with ENTE (OR, 2.265; 95% CI, 1.008-5.086; P = 0.048). Kaplan-Meier survival analyses showed a significant difference between ENTE (+) and ENTE (-) groups for both cancer-specific survival (CSS) and recurrence-free survival (RFS) (P = 0.004 and P = 0.020, respectively, log-rank test). In the pN1a (single lymph node metastasis) subgroup, CSS and RFS were significantly shorter in patients with ENTE (P = 0.001 and P < 0.001, respectively, log-rank test). Comparing CSS and RFS according to pN stages and ENTE status, the survival curves of the pN1 group with ENTE were similar to those of the pN2 group without ENTE. ENTE is a useful prognostic factor for pT3 colorectal adenocarcinomas with regional lymph node metastasis, especially depending on the pN stages. The loss of E-cadherin expression may be an indicator of ENTE. Therefore, ENTE in colorectal adenocarcinoma should be considered in pN staging systems in the future.
Collapse
Affiliation(s)
- Hyunsung Kim
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Sujin Shin
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Yeseul Kim
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Seongsik Bang
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Seongeon Park
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Seungyun Jee
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| | - Seungsam Paik
- Department of Pathology, College of Medicine, Hanyang University Seoul, South Korea
| |
Collapse
|
9
|
Jang SM, Wi YC, Kim Y, Bang SS, Sim J, Ahn BK, Lee KH, Shin SJ, Jang K, Paik SS. Loss of Wnt7a expression correlates with tumor progression and poor prognosis in colorectal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4967-4976. [PMID: 31949573 PMCID: PMC6962898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 06/10/2023]
Abstract
Wnt7a is a known tumor suppressor gene in non-small cell lung cancer that regulates normal cellular proliferation and differentiation. The purpose of this study was to investigate the clinicopathologic significance of Wnt7a expression in colorectal adenocarcinoma. Wnt7a expression was immunohistochemically examined in 46 normal colorectal tissues, 47 tubular adenomas, 393 adenocarcinomas, and 93 lymph node metastases. Wnt7a was expressed in the cytoplasm. Loss of Wnt7a expression was more frequent in adenocarcinoma and lymph node metastasis compared to that in normal and tubular adenoma (P < 0.001). Wnt7a expression was inversely correlated with tumor size (P = 0.026), gross type (P = 0.008), differentiation (P = 0.009), vascular invasion (P = 0.038), tumor deposit (P = 0.007), tumor invasion (T category) (P = 0.003), lymph node metastasis (N category) (P < 0.001), and AJCC stage (P < 0.001). There was a significant correlation between loss of Wnt7a expression and overall survival and disease-free survival (P < 0.001 and P = 0.001, respectively) on univariable analysis. On multivariable analysis, loss of Wnt7a expression was an independent prognostic factor for both overall and disease-free survival (P = 0.002 and P = 0.047, respectively). Loss of Wnt7a expression may contribute to the carcinogenesis and tumor progression of colorectal adenocarcinoma and may be a new prognostic marker of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Se Min Jang
- Department of Pathology, College of Medicine, Konyang UniversityDaejeon, South Korea
| | - Young Chan Wi
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Yeseul Kim
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Seong Sik Bang
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Byung Kyu Ahn
- Department of Surgery, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Kang Hong Lee
- Department of Surgery, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, South Korea
| |
Collapse
|
10
|
Kang X, Li M, Zhu H, Lu X, Miao J, Du S, Xia X, Guan W. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition. Oncotarget 2017; 8:94028-94039. [PMID: 29212207 PMCID: PMC5706853 DOI: 10.18632/oncotarget.21522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance limits treatment efficacy in gastric cancer and doxorubicin resistance is common in gastric cancer cells. Dual specificity phosphatase 4 (DUSP4) has been associated with tumor progression. This study aimed to investigate the mechanism of DUSP4 regulating doxorubicin resistance in gastric cancer cells. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay were used to measure cell viability and proliferation in gastric cancer cells treated with doxorubicin. The expression of DUSP4, E-cadherin and Vimentin protein was detected by Western blotting. Overexpression of DUSP4 was more resistant to doxorubicin in gastric cancer cells. Knockdown of DUSP4 increased the sensitivity of gastric cancer cells to doxorubicin. Moreover, up-regulation of DUSP4 promoted the Epithelial-Mesenchymal Transition (EMT) in gastric cancer cells, but blocking the EMT using a Twist siRNA increased the sensitivity of gastric cancer cells to doxorubicin and confirmed the EMT was involved in DUSP4-mediated doxorubicin resistance. These findings demonstrated that DUSP4 could enhance doxorubicin resistance by promoting EMT in gastric cancer cells.
Collapse
Affiliation(s)
- Xing Kang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Minhuan Li
- Department of Laboratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Hao Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaofeng Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Ji Miao
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Shangce Du
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xuefeng Xia
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Wenxian Guan
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
11
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
12
|
Menyhart O, Budczies J, Munkácsy G, Esteva FJ, Szabó A, Miquel TP, Győrffy B. DUSP4 is associated with increased resistance against anti-HER2 therapy in breast cancer. Oncotarget 2017; 8:77207-77218. [PMID: 29100381 PMCID: PMC5652774 DOI: 10.18632/oncotarget.20430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023] Open
Abstract
The majority of patients develop resistance against suppression of HER2-signaling mediated by trastuzumab in HER2 positive breast cancer (BC). HER2 overexpression activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade. MAPK phosphatases (MKPs) are essential regulators of MAPKs and participate in many facets of cellular regulation, including proliferation and apoptosis. We aimed to identify whether differential MKPs are associated with resistance to targeted therapy in patients previously treated with trastuzumab. Using gene chip data of 88 HER2-positive, trastuzumab treated BC patients, candidate MKPs were identified by Receiver Operator Characteristics analysis performed in R. Genes were ranked using their achieved area under the curve (AUC) values and were further restricted to markers significantly associated with worse survival. Functional significance of the two strongest predictive markers was evaluated in vitro by gene silencing in HER2 overexpressing, trastuzumab resistant BC cell lines SKTR and JIMT-1. The strongest predictive MKPs were DUSP4/MKP-2 (AUC=0.75, p=0.0096) and DUSP6/MKP-3 (AUC=0.77, p=5.29E-05). Higher expression for these correlated to worse survival (DUSP4: HR=2.05, p=0.009 and DUSP6: HR=2, p=0.0015). Silencing of DUSP4 had significant sensitization effects – viability of DUSP4 siRNA transfected, trastuzumab treated cells decreased significantly compared to scramble-siRNA transfected controls (SKTR: p=0.016; JIMT-1: p=0.016). In contrast, simultaneous treatment with DUSP6 siRNA and trastuzumab did not alter cell proliferation. Our findings suggest that DUSP4 may represent a new potential target to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Otília Menyhart
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Gyöngyi Munkácsy
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | | | - András Szabó
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Teresa Puig Miquel
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Balázs Győrffy
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| |
Collapse
|
13
|
Zhang R, Wang G, Zhang PF, Zhang J, Huang YX, Lu YM, Da W, Sun Q, Zhu JS. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J Cell Mol Med 2016; 21:1117-1127. [PMID: 27957827 PMCID: PMC5431127 DOI: 10.1111/jcmm.13043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022] Open
Abstract
Sanguinarine, a bioactive benzophenanthridine alkaloid extracted from plants of the Papaveraceae family, has shown antitumour effects in multiple cancer cells. But the therapeutic effects and regulatory mechanisms of sanguinatine in gastric cancer (GC) remain elusive. This study was aimed to investigate the correlation of dual‐specificity phosphatase 4 (DUSP4) expression with clinicopathologic features and overall survival in patients with GC and explore the effects of sanguinarine on tumour growth and invasion in GC cells (SGC‐7901 and HGC‐27) and underlying molecular mechanisms. Immunohistochemical analysis showed that decreased DUSP4 expression was associated with the sex, tumour size, depth of invasion and distant metastasis in patients with GC. Functional experiments including CCK‐8, Transwell and flow cytometry analysis indicated that sanguinarine or DUSP4 overexpression inhibited GC cell viability and invasive potential, and induced cell apoptosis and cycle arrest in S phase, but DUSP4 knockdown attenuated the antitumour activity of sanguinarine. Further observation demonstrated that sanguinarine up‐regulated the expression of DUSP4 and Bcl‐2‐associated X protein (Bax), but down‐regulated phosphorylated extracellular signal‐regulated kinase (p‐ERK), proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP‐2) and B‐cell lymphoma 2 (Bcl‐2) expression. Taken together, our findings indicate that sanguinarine inhibits growth and invasion of GC cells through regulation of the DUSP4/ERK pathway, suggesting that sanguinarine may have potential for use in GC treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Ge Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Peng-Fei Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Yan-Xia Huang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Yun-Min Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Wei Da
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Qun Sun
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|