1
|
Lactoferrin and the development of salivary stones: a pilot study. Biometals 2022; 36:657-665. [PMID: 36396778 PMCID: PMC10181970 DOI: 10.1007/s10534-022-00465-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
AbstractSalivary stones (sialoliths) are calcified structures located in the ductal system of the major salivary glands. Their exact cause is not clear but in general they are characterized by concentric inorganic (hydroxyapatite) layers. The formation is a slow intermittent process which may result in enlargement of the sialolith causing obstruction of saliva secretion resulting in mealtime related pain and swelling of the affected salivary gland. Various studies reported the presence of organic material such as proteins and lipids in the core of sialoliths. In the present study the protein composition of twenty submandibular sialoliths was analyzed. It was found that proteins contributed on average 5% to the dry weight of submandibular stones whereby small salivary stones contained more extractable proteins than large salivary stones. Using a combination of SDS-PAGE gel electrophoresis and Western blotting, we identified α-amylase (in all stones; 100%), lysozyme (95%), lactoferrin (85%), secretory-IgA (75%), MUC7 (60%), complement C4 (60%) and C-reactive protein (35%). The presence, and the combinations, of lactoferrin, lysozyme, s-IgA and α-amylase in sialoliths was confirmed by ELISA. The gradually increasing size of a sialolith might provoke a local inflammatory response in the duct of the submandibular gland whereby the relatively low concentrations of lactoferrin and lysozyme may originate from neutrophils. The interaction of lactoferrin with s-IgA could contribute to the accumulation of lactoferrin in sialoliths. In summary, these results suggest a new pathophysiological role for lactoferrin, in the formation of sialoliths.
Collapse
|
2
|
Kraaij S, de Visscher JGAM, Apperloo RC, Nazmi K, Bikker FJ, Brand HS. Lactoferrin and the development of salivary stones: a pilot study. Biometals 2022. [PMID: 36396778 DOI: 10.1007/s10534-022-00465-7/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Salivary stones (sialoliths) are calcified structures located in the ductal system of the major salivary glands. Their exact cause is not clear but in general they are characterized by concentric inorganic (hydroxyapatite) layers. The formation is a slow intermittent process which may result in enlargement of the sialolith causing obstruction of saliva secretion resulting in mealtime related pain and swelling of the affected salivary gland. Various studies reported the presence of organic material such as proteins and lipids in the core of sialoliths. In the present study the protein composition of twenty submandibular sialoliths was analyzed. It was found that proteins contributed on average 5% to the dry weight of submandibular stones whereby small salivary stones contained more extractable proteins than large salivary stones. Using a combination of SDS-PAGE gel electrophoresis and Western blotting, we identified α-amylase (in all stones; 100%), lysozyme (95%), lactoferrin (85%), secretory-IgA (75%), MUC7 (60%), complement C4 (60%) and C-reactive protein (35%). The presence, and the combinations, of lactoferrin, lysozyme, s-IgA and α-amylase in sialoliths was confirmed by ELISA. The gradually increasing size of a sialolith might provoke a local inflammatory response in the duct of the submandibular gland whereby the relatively low concentrations of lactoferrin and lysozyme may originate from neutrophils. The interaction of lactoferrin with s-IgA could contribute to the accumulation of lactoferrin in sialoliths. In summary, these results suggest a new pathophysiological role for lactoferrin, in the formation of sialoliths.
Collapse
Affiliation(s)
- Saskia Kraaij
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers, Location VUmc, and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Room 12N-37, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Jan G A M de Visscher
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers, Location VUmc, and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Ruben C Apperloo
- Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zeng KQ, Gong FY, Pan XH, Miao J, Gong Z, Wang J, Zhong Q, Dai XQ, Gao XM. IgG Immunocomplexes Drive the Differentiation of a Novel Subset of Osteoclasts Independent of RANKL and Inflammatory Cytokines. J Bone Miner Res 2021; 36:1174-1188. [PMID: 33651383 DOI: 10.1002/jbmr.4281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Potentiation of receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis by IgG immunocomplexes (ICs) is generally considered an important pathway leading to cartilage and bone destruction in rheumatoid arthritis (RA). However, whether IgG ICs possess pro-osteoclastogenic potential independent of RANKL and inflammatory cytokines is unclear. Here we demonstrate that by fully cross-linking human FcγRIIa (hFcγRIIa) or co-ligating hFcγRIIa and TLR4, IgG ICs alone could drive the differentiation of human blood monocytes into nuclear factor of activated T cells cytoplasmic 1 (NFATc1-negative nonclassical osteoclasts (NOCs). Surprisingly, IgG ICs could also overrule RANKL-induced classical osteoclast (COC) differentiation in vitro. In mouse model of collagen-induced arthritis, hFcγRIIa-transgenic, but not nontransgenic control, mice suffered from cartilage/bone destruction accompanied by the presence of NFATc1- NOCs lining the eroded cartilage surface in affected joints. Our results not only identify a novel subset of IC-induced NOCs but also provide a possible explanation for the uncoupling of FcγR-mediated cartilage destruction from RANKL-related bone erosion in autoinflammatory arthritis. © 2021 American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Ke-Qin Zeng
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Xiao-Hua Pan
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jie Miao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Qiao Zhong
- Department of Laboratory Medicine, Suzhou Municipal Hospital, Suzhou, China
| | - Xia-Qiu Dai
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| |
Collapse
|
4
|
Dong H, Yang Y, Gao C, Sun H, Wang H, Hong C, Wang J, Gong F, Gao X. Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J Immunother Cancer 2020; 8:jitc-2019-000339. [PMID: 32217759 PMCID: PMC7174070 DOI: 10.1136/jitc-2019-000339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) resemble M2-polarized cells with potent immunosuppressive activity and play a pivotal role in tumor growth and progression. Converting TAMs to proinflammatory M1-like phenotype is thus an attractive strategy for antitumor immunotherapy. Methods A mouse IgG1 (kappa) monoclonal Ab, M-860, specific to human lactoferrin (LTF) was generated by using the traditional hybridoma cell fusion technology. TAMs were generated by culturing human and mouse CD14+ monocytes in tumor-conditioned media containing a cytokine cocktail containing recombinant interleukin-4 (IL-4), interleukin-10 (IL-10) and macrophage colony stimulating factor (M-CSF). TAMs after treatment with immunocomplex (IC) between human LTF and M860 (LTF-IC) were phenotypically and functionally characterized by flow cytometry (FACS), ELISA, Q-PCR and killing assays. The antitumor effects of LTF-IC were further analyzed using in vivo experiments employing tumor-bearing human FcγRIIa-transgenic mouse models. Results Through coligation of membrane-bound CD14 and FcγRIIa, LTF-IC rendered TAMs not only M2 to M1 conversion, evidenced by increased tumor necrosis factor α production, down-regulated M2-specific markers (CD206, arginase-1 and vascular endothelial growth factor) and upregulated M1-specific markers (CD86 and HLA-DR) expression, but also potent tumoricidal activity in vitro. LTF-IC administration conferred antitumor protective efficacy and prolonged animal survival in FcγRIIa-transgenic mice, accompanied by accumulation of M1-like macrophages as well as significantly reduced infiltration of immunosuppressive myeloid-derived suppressor cells and regulatory T cells in solid tumor tissues. Conclusions LTF-IC is a promising cancer therapeutic agent capable of converting TAMs into tumoricidal M1-like cells.
Collapse
Affiliation(s)
- Hongliang Dong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yueyao Yang
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chenhui Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Hehe Sun
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Hongmin Wang
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chao Hong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Wang
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Fangyuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xiaoming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Li Y, Li J, Gong Z, Pan XH, Ma ZH, Ma SY, Wang HM, Dong HL, Gong FY, Gao XM. M860, a Monoclonal Antibody against Human Lactoferrin, Enhances Tumoricidal Activity of Low Dosage Lactoferrin via Granzyme B Induction. Molecules 2019; 24:molecules24203640. [PMID: 31600968 PMCID: PMC6832554 DOI: 10.3390/molecules24203640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/05/2022] Open
Abstract
Lactoferrin (LF) is a soluble glycoprotein of the transferring family found in most biological fluids, functioning as a major first line defense molecule against infection in mammals. It also shows certain anti-tumor activity, but its clinical application in tumor therapy is limited because high dosage is required. In this study, we demonstrate that M860, a monoclonal antibody against human LF (hLF), could significantly increase the anti-tumor potential of low dosage hLF by forming LF-containing immune complex (IC). Human monocytes primed with LF-IC, but not hLF or M860 alone, or control ICs, showed strong tumoricidal activity on leukemia cell lines Jurkat and Raji through induction of secreted Granzyme B (GzB). LF-IC is able to colligate membrane-bound CD14 (a TLR4 co-receptor) and FcγRIIa (a low affinity activating Fcγ receptor) on the surface of human monocytes, thereby triggering the Syk-PI3K-AKT-mTOR pathway leading to GzB production. Our work identifies a novel pathway for LF-mediated tumoricidal activity and may extend the clinical application of LF in tumor therapy.
Collapse
Affiliation(s)
- Ya Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China
| | - Jie Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao-Hua Pan
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zi-Han Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shu-Yan Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Min Wang
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Liang Dong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang-Yuan Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| | - Xiao-Ming Gao
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| |
Collapse
|
6
|
Zhong Q, Gong FY, Gong Z, Hua SH, Zeng KQ, Gao XM. IgG Immunocomplexes Sensitize Human Monocytes for Inflammatory Hyperactivity via Transcriptomic and Epigenetic Reprogramming in Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3913-3925. [PMID: 29712771 DOI: 10.4049/jimmunol.1701756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
Prevalence of circulating immunocomplexes (ICs) strongly correlates with rheumatoid arthritis (RA) in humans. Deposits of IgG-ICs are abundant in affected joints of patients, yet molecular mechanisms for the pathogenic roles of such ICs are not fully understood. In this study, we present evidence that IgG-ICs precipitated from RA sera sensitized human monocytes for a long-lasting inflammatory functional state, characterized by a strong TNF-α response to cellular proteins representing damage-associated molecular patterns and microbe-derived pathogen-associated molecular patterns. Importantly, plate-coated human IgG (a mimic of deposited IC without Ag restriction) exhibited a similarly robust ability of monocyte sensitization in vitro. The plate-coated human IgG-induced functional programming is accompanied by transcriptomic and epigenetic modification of various inflammatory cytokines and negative regulator genes. Moreover, macrophages freshly isolated from synovia of patients with RA, but not sera-negative arthropathy, displayed a signature gene expression profile highly similar to that of IC-sensitized human monocytes, indicative of historical priming events by IgG-ICs in vivo. Thus, the ability of IgG-ICs to drive sustainable functional sensitization/reprogramming of monocytes and macrophages toward inflammation may render them key players in the development of RA.
Collapse
Affiliation(s)
- Qiao Zhong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.,Suzhou Municipal Hospital, Suzhou 215002, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sheng-Hao Hua
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zeng
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou 215001, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; .,Jiangsu Key Laboratory of Infection and Immunity, Suzhou 215123, China; and.,Key Laboratory of Systemic Biomedical Study, Suzhou 215123, China
| |
Collapse
|
7
|
Gao CH, Dong HL, Tai L, Gao XM. Lactoferrin-Containing Immunocomplexes Drive the Conversion of Human Macrophages from M2- into M1-like Phenotype. Front Immunol 2018; 9:37. [PMID: 29410669 PMCID: PMC5787126 DOI: 10.3389/fimmu.2018.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
Macrophages are multifunctional cells that perform diverse roles in health and disease and considered the main source of inflammatory cytokines in affected joints of patients with rheumatoid arthritis (RA). M2 macrophages are well known as anti-inflammation and wound-healing cells; however, recent evidence suggests that they can also promote inflammation in RA, although the underlying mechanism remains to be clarified. Based upon our recent finding that lactoferrin (LTF)-containing IgG immunocomplex (LTF-IC), found elevated in RA sera, potent activators of human monocytes/macrophages, we herein demonstrate that LTF-IC was able to elicit immediate proinflammatory cytokine production by M2-polarized human macrophages through coligation with CD14/toll-like receptor (TLR) 4 and FcγRIIa (CD32a). The LTF-IC-treated M2 cells adopted surface maker expression profile similar to that of M1 phenotype and became functionally hyperactive to subsequent stimuli such as lipopolysaccharide, zymosan and IL-1β, which could provide a positive feedback signal to promote excessive inflammation in RA. They also acquired the ability to facilitate activation of Th17 cells that are known to play critical roles in RA pathology. We propose that IgG ICs containing TLR agonizing autoantigens are able to directly switch human macrophages from M2 into M1-like phenotype, thereby promoting excessive inflammation in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Chen-Hui Gao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Liang Dong
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Tai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Chen Y, Gong FY, Li ZJ, Gong Z, Zhou Z, Ma SY, Gao XM. A study on the risk of fungal infection with tofacitinib (CP-690550), a novel oral agent for rheumatoid arthritis. Sci Rep 2017; 7:6779. [PMID: 28754958 PMCID: PMC5533717 DOI: 10.1038/s41598-017-07261-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Tofacitinib (CP-690550), an oral Janus kinase inhibitor, has shown significant efficacy in the treatment of rheumatoid arthritis through blocking the signaling pathways of pro-inflammatory cytokines. However, recent evidence suggests that long-term tofacitinib treatment is associated with increased risk of infection (e.g. tuberculosis) in patients. In the present study, we illustrate that tofacitinib administration significantly reduced the survival rate of mice given lethal or sub-lethal dose challenge with Candida albicans. This was related to the ability of tofacitinib to reverse TNFα- and IFNγ-enhanced candidacidal activity of murine polymorph nuclear cells (PMNs) and also to suppress chemokine CXCL5 expression and PMN infiltration in the infected tissues of mice. More importantly, tofacitinib significantly antagonized the ability of TNFα, IFNγ and GM-CSF to boost human PMNs in phagocytosis and direct killing of C. albicans in vitro. It also down-regulated reactive oxygen production and neutrophil extracellular trap formation by human PMNs stimulated with yeast-derived β-glucans in the presence of TNFα, IFNγ or GM-CSF. Our data emphasizes a significantly increased risk for opportunistic fungal infection associated long-term tofacitinib treatment in humans, likely through antagonizing the PMN-boosting effect of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Zhen-Jun Li
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhe Zhou
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shu-Yan Ma
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Hu L, Hu X, Long K, Gao C, Dong HL, Zhong Q, Gao XM, Gong FY. Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci Rep 2017; 7:4230. [PMID: 28652573 PMCID: PMC5484712 DOI: 10.1038/s41598-017-04275-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
Lactoferrin (LTF), an important first line defense molecule against infection, is a common target for humoral autoimmune reactions in humans. Since LTF is a multifunctional protein capable of activating innate immune cells via various surface receptors, we hypothesized that LTF-containing immune complexes (ICs) (LTF-ICs), likely formed in patients with high titer anti-LTF autoantibodies, could possess unique monocyte/macrophage-activating properties compared with other ICs. ELISA analysis on serum samples from rheumatoid arthritis (RA) patients (n = 80) and healthy controls (n = 35) for anti-LTF autoantibodies confirmed a positive correlation between circulating LTF-specific IgG and RA. ICs between human LTF and LTF-specific IgG purified from patient sera or immunized rabbits and mice, but not control ICs, LTF or Abs alone, elicited strong production of TNF-α and IL-1β by freshly fractionated human peripheral blood monocytes and monocytes-derived macrophages. Furthermore, LTF-ICs utilized both membrane-anchored CD14 and CD32a (FcγRIIa) to trigger monocyte activation in an internalization-, Toll-like receptor (TLR)4- and TLR9-dependent manner, and also that LTF-IC-induced cytokine production was blocked by specific inhibitors of caspase-1, NF-κB and MAPK. These results uncover a possible pathway for LTF-ICs perpetuating local inflammation and contributing to the pathogenesis of autoimmune diseases by triggering activation of infiltrating monocytes or tissue macrophages in vivo.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaomin Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kai Long
- Department of Immunology, Peking University Health Science Center, Beijing, China.,Department of Physiology, Jiujiang College, Jiangxi Province, China
| | - Chenhui Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Liang Dong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qiao Zhong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|