1
|
Sudewi S, Li CH, Chabib L, Rasool A, Arputharaj E, Zulfajri M, Huang GG. Turn-off/turn-on biosensing of tetracycline and ciprofloxacin antibiotics using fluorescent iron oxide quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1261-1271. [PMID: 38323472 DOI: 10.1039/d3ay02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A fluorescence probe based on iron oxide quantum dots (IO-QDs) was synthesized using the hydrothermal method for the determination of tetracycline (TCy) and ciprofloxacin (CPx) in aqueous solution. The IO-QDs were characterized using high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (P-XRD), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR). The as-prepared IO-QDs are fluorescent, stable, and with a fluorescence quantum yield (QY) of 9.8 ± 0.12%. The fluorescence of IO-QDs was observed to be quenched and enhanced in the presence of TCy and CPx, respectively. The fluorescence intensity ratio shows linearity at concentrations from 1-100 μM and 5-100 μM for TCy and CPx, respectively; the detection limit for TCy and CPx was estimated to be 0.71 μM and 1.56 μM, respectively. The proposed method was also successfully utilized in the spiked samples of drinking water and honey with good recoveries. The method offered convenience, rapid detection, high sensitivity, selectivity, and cost-efficient alternative options for the determination of TCy and CPx in real samples.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Lutfi Chabib
- Pharmacy Study Program, Faculty of Mathematics and Science, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Akhtar Rasool
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
| | - Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Aleem A, Akhtar B, Muhammad F, Qureshi AS, Rahman SU. Development of a Lateral-Flow Immunochromatographic Strip for the Detection of Oxytetracycline Residues in Biological Fluids. ACS OMEGA 2023; 8:36237-36244. [PMID: 37810669 PMCID: PMC10552086 DOI: 10.1021/acsomega.3c04759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Oxytetracycline (OTC) is extensively used in veterinary medicine and for growth promotion around the globe. The indiscriminate use of OTC in food-producing animals leaves residues in animal products. The presence of these residues in animal products causes economic losses and harmful effects on consumers. Different regulatory bodies set maximum residue limits (MRLs) for different tetracyclines. To avoid harmful effects, there is a need for a simple, fast, and economical method for the screening of animal products. In this study, a fast, economical, and user-friendly lateral-flow immunochromatographic (LFIC) assay based on gold nanoparticles (AuNPs) was developed to detect the presence of OTC residues in biological fluids. AuNPs provided visual results as red lines in 6-15 min. Polyclonal rabbit IgG antibodies were produced using the immunogen of OTC. These antibodies were purified by the combined ammonium sulfate-octanoic acid precipitation method. Antibodies were conjugated to AuNPs as recognition biomolecules. A LFIC strip was optimized using borate buffer spiked with different concentrations of the OTC. The visual limit of detection (LOD) in different biological samples (milk, serum, and urine) was determined using samples spiked with OTC. The LOD was found to be 15 μg/L, which is very low from the MRL (100 μg/L) set by different regulatory authorities. This LFIC strip can be used to detect OTC residues in biological fluids for point-of-care testing (POCT). These strips are easy to use, cost-effective, and portable and provide quick results without the use of laboratory instruments.
Collapse
Affiliation(s)
- Abdul Aleem
- Institute
of Physiology and Pharmacology, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Bushra Akhtar
- Department
of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Faqir Muhammad
- Department
of Biosciences, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Anas Sarwar Qureshi
- Department
of Anatomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sajjad-ur Rahman
- Institute
of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Li F, Yang Y, Tan J, Wang Z, Zhou X. Group-targeting sulfonamides via an evanescent-wave biosensor based on rational designed coating antigen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160703. [PMID: 36493837 DOI: 10.1016/j.scitotenv.2022.160703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In order to effectively monitor a wide variety of sulfonamides residues in the environment, group-targeting immunoassay based on the group-specific antibodies has attracted great attentions, which can realize the detection of a group of contaminants in environment as many as possible even the unrecognized ones. Indirect competitive immunoassay is generally adopted for small molecule detection however the rational design of immobilized coating antigen for improved recognition capability on the solid surface is far from enough. To cover the research gap, we proposed the design criteria of coating antigen for surface-based indirect competitive immunoassay based on the molecular docking. Taking the group-specific antibodies against sulfonamides (SA) as a proof-of-concept, a hapten with a linking arm with 3 methyl groups was selected to synthesize the coating antigen. Through surface immobilization of coating antigen, a portable biosensor for group-targeting immunoassay of sulfonamides was developed and demonstrated excellent performance with detection limits lower than 0.6 μg/L for four SA variants, and the cross-reactivities of 148-215 % relative to sulfadiazine. The recovery rates of SAs in liquid milk ranges from 87 to 97 %, which confirmed the application potential of this method in the determination of SAs. Its capability to measure total SAs in a simple and low-cost way would pave the way for a variety of application fields.
Collapse
Affiliation(s)
- Fangxu Li
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yihan Yang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
|
5
|
Birader K, Kumar P, Tammineni Y, Barla JA, Reddy S, Suman P. Colorimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk. Food Chem 2021; 356:129659. [PMID: 33812186 DOI: 10.1016/j.foodchem.2021.129659] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Oxytetracycline (OTC), one of the largely used antibiotic in veterinary practice has been banned due to its potential side effects. Development of a field applicable and affordable kit to detect OTC will help to eliminate such milk from human consumption. An aptamer has been designed (27 nt; Kd = 29.2 ± 19.4 nM) through rational truncation. OTC interacts with this aptamer in G rich regions as confirmed by molecular modelling and circular dichroism spectroscopy. To develop a lateral flow based aptasensor, OTC was conjugated with a 7 kDa carrier protein to immobilize onto the nitrocellulose membrane. Using 0.125 µM aptamer-gold conjugate, assay could visually detects upto 5 ng/mL of OTC in spiked milk within 10 mins [Limit of quantitation (LOQ)-0.254 ± 1.62 ng/mL; permissible limit 100 ng/mL]. It showed no cross reactivity with components of milk and data correlated with analysis done through HPLC.
Collapse
Affiliation(s)
- Komal Birader
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Pankaj Kumar
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Yathirajarao Tammineni
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Jeannie Alice Barla
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Shashidhar Reddy
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Pankaj Suman
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India.
| |
Collapse
|
6
|
Sheng YM, Liang J, Xie J. Indirect Competitive Determination of Tetracycline Residue in Honey Using an Ultrasensitive Gold-Nanoparticle-Linked Aptamer Assay. Molecules 2020; 25:molecules25092144. [PMID: 32375304 PMCID: PMC7249119 DOI: 10.3390/molecules25092144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tetracycline residue in honey has become an increasingly important food safety problem. In this work, an ultrasensitive gold nanoparticles (AuNPs)-linked aptamer assay was developed to determine the tetracycline residue in honey. First, a tetracycline–bovine serum albumin conjugate coating was applied to a microplate. Then, with the incubation of AuNPs-linked aptamer, the fixed tetracycline in the microplate competed for the limited aptamer with the free tetracycline in the sample. Higher amounts of free tetracycline in the sample were associated with more competitive binding of aptamer-AuNPs, and the aptamer-AuNPs binding with tetracycline-BSA was lower. Finally, as a kind of nanozyme, AuNPs exhibited peroxidase activity and oxidized 3,3′,5,5′-tetramethylbenzidine, transforming it from colorless to blue, and achieving the measurement at 652 nm. The analytical performance—including linearity, limit of detection, selectivity, precision, repeatability, and accuracy—has been investigated. It was successfully applied to the determination of tetracycline in honey samples with high accuracy and sensitivity.
Collapse
Affiliation(s)
- Yan-Mei Sheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China;
| | - Jian Liang
- Centre for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Jing Xie
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China;
- Correspondence: ; Tel.: +86-28-62308658
| |
Collapse
|
7
|
Husain DR, Gunawan S, Sulfahri S. Antimicrobial potential of lactic acid bacteria from domestic chickens (Gallus domesticus) from south Celebes, Indonesia, in different growth phases: in vitro experiments supported by computational docking. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:62-69. [PMID: 32322381 PMCID: PMC7163039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Pathogenic bacterial infection is one of the factors that can cause extensive losses in poultry farming. Pathogenic bacteria that infect domestic chickens (Gallus domesticus) include Escherichia coli. This study has investigated antimicrobial compounds from probiotic bacteria isolated from the digestive tract of domestic chickens originating from Takalar Regency, South Sulawesi, Indonesia. MATERIALS AND METHODS Lactic acid bacteria were grown on de Man-Ragosa-Sharpe agar medium for 24 hours. The bacterial isolate with the best inhibitory power was identified as Bacillus subtilis (B. subtilis), based on 16S RNA sequences. Antimicrobial activity of the selected lactic acid bacteria was tested on the pathogenic bacteria, E. coli and Staphylococcus aureus. Using well diffusion method. In this study, in silico study was conducted to examine the structure and binding affinity of lactic acid bacteria against E. coli and S. aureus. Molecular docking experiments were performed using the PyRx 0.8 software. RESULTS This study showed that the bacteria were B. subtilis strain PATA-5. The response of inhibition of antimicrobial compounds produced by B. subtilis strain PATA-5 maximum in the stationary phase. The bactericidal properties of B. subtilis strain PATA-5 were categorized as strong against Gram-negative E. coli, i.e., 30.5 mm, when compared to Gram-positive S. aureus, i.e., 17.5 mm. CONCLUSION B. subtilis strain PATA-5 is capable to produce natural antibiotic cyclic lipopeptides, namely surfactin.
Collapse
Affiliation(s)
| | | | - Sulfahri Sulfahri
- Corresponding author: Sulfahri Sulfahri, PhD, Department of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia. Tel: +62-411556449, Fax: +62-411554522,
| |
Collapse
|
8
|
Wei YH, Li XY, Gao J, Liu JJ, Yuan D, Yin BC, Wang J. Size-dependent modulation of CoOOH nanoflakes light scattering for rapid and selective detection of tetracycline in milk. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0080-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|