1
|
Norovirus Epidemiology and Genetic Diversity in Leipzig, Germany during 2013-2017. Viruses 2021; 13:v13101961. [PMID: 34696390 PMCID: PMC8541062 DOI: 10.3390/v13101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Globally and in all age groups, noroviruses are a main cause of gastroenteritis. To assess their local epidemiology and genetic diversity, stool samples of 7509 inpatients with gastrointestinal complaints from all age groups were analyzed. After detection of norovirus genogroup I and II RNA by real-time RT-PCR, viral capsids were genotyped by partial nucleic acid sequencing. In the case of GII.2 strains, polymerase genotypes were also assessed. Between October 2013 and September 2017, presence of norovirus RNA was shown in 611 samples (8.1%), of which 610 (99.8%) were typed successfully. Norovirus positivity rate was higher in patients aged below five years (14.8%) than in older patients (5.7%). Among the 611 norovirus positive samples, GII.4 (56.6%) strains prevailed, followed by GII.6 (11.3%), GII.3 (11.0%) and GII.2 (9.5%). The most common genogroup I (GGI) genotype was GI.3 (3.6%). In addition, rare genotypes such as GII.13, GII.14 and GII.26 were detected. Interestingly, GII.3 infections were most common in children under the age of five years. Assessment of polymerase genotypes in GII.2 viruses showed a shift from P2 to P16, with higher diversity in P2 sequences. The varying distribution of norovirus genotypes depending on season, age and setting of infection highlights the importance of frequent genotyping as a basis for vaccine development and needful adjustments.
Collapse
|
2
|
Choi MS, Jeon EB, Kim JY, Choi EH, Lim JS, Choi J, Ha KS, Kwon JY, Jeong SH, Park SY. Virucidal Effects of Dielectric Barrier Discharge Plasma on Human Norovirus Infectivity in Fresh Oysters ( Crassostrea gigas). Foods 2020; 9:E1731. [PMID: 33255577 PMCID: PMC7760321 DOI: 10.3390/foods9121731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
This study investigates the effects of dielectric barrier discharge (DBD) plasma treatment (1.1 kV, 43 kHz, N2 1.5 L/min, 10~60 min) on human norovirus (HuNoV) GII.4 infectivity in fresh oysters. HuNoV viability in oysters was assessed by using propidium monoazide (PMA) as a nucleic acid intercalating dye before performing a real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, the impact of the DBD plasma treatment on pH and Hunter colors was assessed. When DBD plasma was treated for 60 min, the HuNoV genomic titer reduction without PMA pretreatment was negligible (<1 log copy number/µL), whereas when PMA treatment was used, HuNoV titer was reduced to >1 log copy number/µL in just 30 min. D1 and D2-value of HuNoV infectivity were calculated as 36.5 and 73.0 min of the DBD plasma treatment, respectively, using the first-order kinetics model (R2 = 0.98). The pH and Hunter colors were not significantly different (p > 0.05) between the untreated and DBD-plasma-treated oysters. The results suggest that PMA/RT-qPCR could help distinguish HuNoV infectivity without negatively affecting oyster quality following >30 min treatment with DBD plasma. Moreover, the inactivation kinetics of nonthermal DBD plasma against HuNoV in fresh oysters might provide basic information for oyster processing and distribution.
Collapse
Affiliation(s)
- Man-Seok Choi
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Ji Yoon Kim
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Jinsung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Shin Young Park
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| |
Collapse
|
3
|
Boonchan M, Motomura K, Inoue K, Ode H, Chu P, Lin M, Iwatani Y, Ruchusatsawat K, Guntapong R, Tacharoenmuang R, Chantaroj S, Tatsumi M, Takeda N, Sangkitporn S. Distribution of norovirus genotypes and subtypes in river water by ultra-deep sequencing-based analysis. Lett Appl Microbiol 2017; 65:98-104. [DOI: 10.1111/lam.12750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- M. Boonchan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
| | - K. Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - K. Inoue
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - H. Ode
- National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - P.Y. Chu
- Department of Medical Laboratory Science and Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| | - M. Lin
- Department of Medical Laboratory Science and Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Y. Iwatani
- National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - K. Ruchusatsawat
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - R. Guntapong
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - R. Tacharoenmuang
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - S. Chantaroj
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - M. Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - N. Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - S. Sangkitporn
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| |
Collapse
|
4
|
Fonager J, Stegger M, Rasmussen LD, Poulsen MW, Rønn J, Andersen PS, Fischer TK. A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks and novel variants. Sci Rep 2017; 7:813. [PMID: 28400558 PMCID: PMC5429772 DOI: 10.1038/s41598-017-00926-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) is the most common cause of non-bacterial gastroenteritis and is a major agent associated with outbreaks of gastroenteritis. Conventional molecular genotyping analysis of NoV, used for the identification of transmission routes, relies on standard typing methods (STM) by Sanger-sequencing of only a limited part of the NoV genome, which could lead to wrong conclusions. Here, we combined a NoV capture method with next generation sequencing (NGS), which increased the proportion of norovirus reads by ~40 fold compared to NGS without prior capture. Of 15 NoV samples from 6 single-genotype outbreaks, near full-genome coverage (>90%) was obtained from 9 samples. Fourteen polymerase (RdRp) and 15 capsid (cap) genotypes were identified compared to 12 and 13 for the STM, respectively. Analysis of 9 samples from two mixed-genotype outbreaks identified 6 RdRp and 6 cap genotypes (two at >90% NoV genome coverage) compared to 4 and 2 for the STM, respectively. Furthermore, complete or partial sequences from the P2 hypervariable region were obtained from 7 of 8 outbreaks and a new NoV recombinant was identified. This approach could therefore strengthen outbreak investigations and could be applied to other important viruses in stool samples such as hepatitis A and enterovirus.
Collapse
Affiliation(s)
- Jannik Fonager
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Mille Weismann Poulsen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Rønn
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases and Centre for Global health, Clinical Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Wang HB, Wang Q, Zhao JH, Tu CN, Mo QH, Lin JC, Yang Z. Complete nucleotide sequence analysis of the norovirus GII.17: A newly emerging and dominant variant in China, 2015. INFECTION GENETICS AND EVOLUTION 2015; 38:47-53. [PMID: 26687061 DOI: 10.1016/j.meegid.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/21/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Norovirus is an important pathogen which accounts for majority of the viral related acute gastroenteritis. Recently, a variant of genotype GII.17 was reported to be predominant over GII.4 and accounted for several acute gastroenteritis outbreaks in Asia. In the current study, the full genome of a norovirus strain ZHITHC-12 isolated during this outbreak period in China was identified and characterized. The viral genome was 7557 nucleotides in length and a phylogenetic analysis based on full length genome sequences indicated that ZHITHC-12 belonged to GII.17 genotype. A further phylogenetic analysis based on all available polymerase and capsid sequences showed that ZHITHC-12 was in Cluster III on both phylogenetic trees and grouped with other strains also isolated during 2013 to 2015. Moreover, homology modeling analysis based on GII norovirus capsid 5BSX template revealed that substitutions, mutations, and more importantly, deletions and insertions, occurred at or near the putative epitopes and histo-blood group antigen (HBGA) binding sites in its protruding P2 domain, which might confer new antigenic or biological properties for this novel variant. In summary, the first full genome and capsid protein structure of a novel norovirus GII.17 variant isolated in China was extensively characterized. The data would be helpful not only for the epidemiology study, but also for the diagnostic tool development and effective vaccine design in the future.
Collapse
Affiliation(s)
- Hai-Bo Wang
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Qi Wang
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Jun-Hua Zhao
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Cheng-Ning Tu
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Qiu-Hua Mo
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Ji-Can Lin
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China
| | - Ze Yang
- State Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai Entry-Exit Inspection and Quarantine Bureau, Zhuhai, Guangdong, China.
| |
Collapse
|