1
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Deng R, Li F, Wu H, Wang WY, Dai L, Zhang ZR, Fu J. Anti-inflammatory Mechanism of Geniposide: Inhibiting the Hyperpermeability of Fibroblast-Like Synoviocytes via the RhoA/p38MAPK/NF-κB/F-Actin Signal Pathway. Front Pharmacol 2018; 9:105. [PMID: 29497378 PMCID: PMC5818421 DOI: 10.3389/fphar.2018.00105] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Geniposide (GE) is the extraction and purification of iridoid glycosides from the Gardenia jasminoides Ellis, which is a promising anti-inflammatory drug, but its mechanism of actions on rheumatoid arthritis (RA) has not been clarified. This study investigated the molecular mechanism behind GE reduced the high permeability of fibroblast-like synoviocytes (FLSs) derived from SD rats with adjuvant arthritis (AA), with the aims of observing the action of GE in AA rats and exploring new therapeutic strategies for RA treatment. The CCK-8 method was used to detect FLSs proliferation. The pro-inflammatory cytokines levels and anti-inflammatory cytokines levels in FLSs were determined by ELISA kits. FLSs permeability assay was performed on Transwell. Immunofluorescence was used to assay the arrangement and morphology of F-actin. The expression of the key molecules related to FLSs permeability (RhoA, p-p38MAPK, NF-κB p-p65 and F-actin) was detected by western blotting. After treatment with lipopolysaccharide (LPS), the proliferation and the permeability of the cells increased significantly (all P < 0.05). The expression of RhoA, p-p38MAPK, NF-κB p-p65 and F-actin in FLSs was higher compared with the control group, and F-actin was redistributed, with the formation of additional stress fibers. But, these conditions were moderated after treatment with GE. We demonstrated that the treatment of different concentrations of GE (25, 50, and 100 μg/mL) had a significant inhibitory effect on the proliferation and permeability of FLSs in vitro. Furthermore, the levels of interleukin (IL)-1β and IL-17 secreted by FLSs were decreased in different doses of GE groups, and the levels of anti-inflammatory cytokines (IL-4, TGF-β1) were increased. Under treatment with GE, low expression of RhoA downregulated expression of p-p38MAPK, NF-κB p-p65, and F-actin while compared with control group, and restored the hyperpermeability of FLSs due to LPS treatment. Taken together, GE might play its anti-inflammatory and immunoregulatory effects via regulating the relative equilibrium of pro-inflammatory cytokines and anti-inflammatory cytokines. GE attenuated the hyperpermeability of FLSs. The down-regulation of the conduction of RhoA/p38MAPK/NF-κB/F-actin signal may play a critical role in the mechanisms of GE on RA. GE could be an effective therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Yu Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zheng-Rong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Lin YY, Jean YH, Lee HP, Lin SC, Pan CY, Chen WF, Wu SF, Su JH, Tsui KH, Sheu JH, Sung PJ, Wen ZH. Excavatolide B Attenuates Rheumatoid Arthritis through the Inhibition of Osteoclastogenesis. Mar Drugs 2017; 15:md15010009. [PMID: 28067799 PMCID: PMC5295229 DOI: 10.3390/md15010009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 02/08/2023] Open
Abstract
Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA). Pro-inflammatory cytokines, such as interleukin-17A (IL-17A) and macrophage colony-stimulating factor (M-CSF), can be overexpressed in RA and lead to osteoclastogenesis. In a previous study, we found that cultured-type soft coral-derived excavatolide B (Exc-B) exhibited anti-inflammatory properties. In the present study, we thus aimed to evaluate the anti-arthritic activity of Exc-B in in vitro and in vivo models. The results demonstrated that Exc-B inhibits LPS-induced multinucleated cell and actin ring formation, as well as TRAP, MMP-9, and cathepsin K expression. Additionally, Exc-B significantly attenuated the characteristics of RA in adjuvant (AIA) and type II collagen-induced arthritis (CIA) in rats. Moreover, Exc-B improved histopathological features, and reduced the number of TRAP-positive multinucleated cells in the in vivo AIA and CIA models. Immunohistochemical analysis showed that Exc-B attenuated the protein expression of cathepsin K, MMP-2, MMP-9, CD11b, and NFATc1 in ankle tissues of AIA and CIA rats. Level of interleukin-17A and macrophage colony-stimulating factor were also decreased by Exc-B. These findings strongly suggest that Exc-B could be of potential use as a therapeutic agent by inhibiting osteoclast differentiation in arthritis. Moreover, this study also illustrates the use of the anti-inflammatory marine compound, Exc-B, as a potential therapeutic strategy for RA.
Collapse
Affiliation(s)
- Yen-You Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Yen-Hsuan Jean
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, No.60, Dalian Road, Pingtung 90059, Taiwan.
| | - Hsin-Pai Lee
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, No.60, Dalian Road, Pingtung 90059, Taiwan.
| | - Sung-Chun Lin
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, No.60, Dalian Road, Pingtung 90059, Taiwan.
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, No.142, Haizhuan Road, Nanzi District, Kaohsiung 81157, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, No.123, Dapi Road, Niaosong District, Kaohsiung 83301, Taiwan.
- Department of Neurosurgery, Xiamen Chang Gung Memorial Hospital, No.123, Xiafei Road, Haicang District, Xiamen 361000, China.
| | - Shu-Fen Wu
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, No.168, Sec. 1, University Road, Min-Hsiung, Chia-yi 62102, Taiwan.
| | - Jui-Hsin Su
- Taiwan Coral Research Center, National Museum of Marine Biology & Aquarium, No.2 Houwan Road, Checheng, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, No.2 Houwan Road, Checheng, Pingtung 94450, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Road, Zuoying District, Kaohsiung 81362, Taiwan.
- Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei 11221, Taiwan.
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, No.20, Weixin Road, Yanpu, Pingtung 90741, Taiwan.
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Ping-Jyun Sung
- Taiwan Coral Research Center, National Museum of Marine Biology & Aquarium, No.2 Houwan Road, Checheng, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, No.2 Houwan Road, Checheng, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan.
| |
Collapse
|