1
|
Hong L, Yang C. Eupatilin ameliorates postmenopausal osteoporosis via elevating microRNA-211-5p and repressing Janus kinase 2/Signal transducer and activator of transcription 3 pathway. Mol Cell Biochem 2024; 479:2471-2481. [PMID: 37823974 DOI: 10.1007/s11010-023-04863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
This study explored the effect of Eupatilin on postmenopausal osteoporosis and explored the mechanisms associated with miR-211-5p. First, the rats were given intragastric administration of Eupatilin every day and subcutaneously injected once a week with oligonucleotides or plasmids that interfered with the expression of miR-211-5p or Janus kinase 2 (JAK2). After 4 weeks, a rat model of osteoporosis was established. Then, serum alkaline phosphatase, calcium and phosphorus levels were detected, as well as femur bone mineral density and biomechanical parameters. HE staining and Masson staining were applied for detecting the pathological condition of femur while immunohistochemical staining was for detecting the positive expression of osteocalcin. In addition, MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2, and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/Signal transducer and activator of transcription 3 (STAT3) pathway was analyzed, and the targeting of miR-211-5p and JAK2 was also verified. The experimental results found that Eupatilin improved the pathological conditions of osteoporotic rats by promoting the proliferation and mineralization of osteoblasts. miR-211-5p was down-regulated and JAK2/STAT3 were up-regulated in osteoporotic rats. Upregulation of miR-211-5p further improved the pathological conditions of osteoporotic rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. Upregulation of JAK2 reversed the effects of elevated miR-211-5p on osteoporotic rats. Overall, Eupatilin attenuates postmenopausal osteoporosis through elevating miR-211-5p and repressing JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Liu Hong
- Department of Orthopedics, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Chao Yang
- Department of Orthopedics, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, 430070, Hubei Province, China.
| |
Collapse
|
2
|
Hong L, Yang C. Eupatilin ameliorates postmenopausal osteoporosis via elevating microRNA-211-5p and repressing JAK2/STAT3 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2218-2228. [PMID: 38130072 DOI: 10.1002/tox.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. Eupatilin is a key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai. Recent research reports have proved the inhibitory function of Eupatilin in many diseases. MicroRNAs (miRNAs) are 21-23 nucleotide-long, single-stranded, noncoding RNA molecules generated endogenously, and many studies have indicated that miRNAs are involved in the development of osteoporosis. This study explored the role and potential mechanism of Eupatilin underlying PMOP. First, rats were given intragastric administration of Eupatilin every day and subcutaneous injections of oligonucleotides or plasmids that interfered with miR-211-5p or janus kinase 2 (JAK2) once a week. After 4 weeks, the PMOP rat model was established. Then, serum alkaline phosphatase, calcium, and phosphorus levels, as well as femur bone mineral density and biomechanical parameters, were detected. Hematoxylin-eosin staining and Masson staining were applied for detecting the pathological condition of femur, and immunohistochemical staining was for detecting osteocalcin. MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2; and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was analyzed. The targeting relation between miR-211-5p and JAK2 was also verified. The experimental results revealed that Eupatilin improved the pathological conditions of PMOP rats by promoting the proliferation and mineralization of osteoblasts. MiR-211-5p was down-regulated and JAK2/STAT3 was upregulated in PMOP rats. Upregulation of miR-211-5p further improved the pathological conditions of PMOP rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. JAK2 offset the effects of elevated miR-211-5p on PMOP rats. Overall, Eupatilin attenuates PMOP through elevating miR-211-5p and repressing JAK2/STAT3 pathway, which suggests the utility of Eupatilin as a potential drug for POMP treatment.
Collapse
Affiliation(s)
- Liu Hong
- Department of Orthopedics, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Chao Yang
- Department of Orthopedics, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wang S, Wang S, Wang X, Xu Y, Zhang X, Han Y, Yan H, Liu L, Wang L, Ye H, Li X. Effects of Icariin on Modulating Gut Microbiota and Regulating Metabolite Alterations to Prevent Bone Loss in Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2022; 13:874849. [PMID: 35399950 PMCID: PMC8988140 DOI: 10.3389/fendo.2022.874849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is an estrogen deficiency-induced bone loss, which has been shown an association with an altered gut microbiota (GM). Gut microbiota-bone axis has been recognized as a crucial mediator for bone homeostasis. Icariin (ICA) is an effective agent to delay bone loss by regulating the bone homeostasis. Thus, we hypothesize that ICA can prevent bone loss by modulating GM and regulating metabolite alterations. The effects of ICA on bone metabolism improvement in ovariectomized (OVX) rats and their relationships with the GM and fecal metabolites were investigated. Micro-computed tomography (micro-CT) and hematoxylin-eosin (HE) staining showed a typical bone boss in OVX group, while ICA or estradiol (E2) administration exhibited positive effects on bone micro-architecture improvement. The GM such as Actinobacteria, Gammaproteobacteria, Erysipelotrichi, Erysipelotrichales, Enterobacteriales, Actinomycetales, Ruminococcus and Oscillospira significantly correlated to serum bone Gla-protein (BGP), receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG) and tartrate resistant acid phosphatase (TRACP). Further t-test revealed a substantial variation of the GM and fecal metabolites in different treatments. Among them, Lachnoclostridium, Butyricimonas, Rikenella, Paraprevolla, Adlercreutzia, Enterorhabdus, Anaerovorax, Allobaculum, Elusimicrobium, Lactococcus, Globicatella and Lactobacillus were probably the key microbial communities driving the change of bile acid, amino acid and fatty acid, thereby leading to an improvement of PMOP. The significant up-regulation of L-Saccharopine, 1-Aminocyclohexadieneacid and linoleic acid after ICA administration suggested important contributions of amino acid and fatty acid metabolisms in the prevention and treatment of PMOP. Taken together, our study has provided new perspectives to better understand the effects of ICA on PMOP improvement by regulating GM and the associated fecal metabolites. Our findings contribute to develop ICA as a potential therapy for PMOP.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengjie Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linglong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Graphene Oxide Quantum Dots Promote Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth via the Wnt/ β-Catenin Signaling Pathway. Stem Cells Int 2021; 2021:8876745. [PMID: 33628273 PMCID: PMC7886518 DOI: 10.1155/2021/8876745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Graphene oxide quantum dots (GOQDs) are a carbon nanomaterial with broad potential for application in the field of nanomaterial biomedicine. Stem cells from human exfoliated deciduous teeth (SHEDs) play an important role in tissue engineering and regenerative medicine. This study investigated the effects of GOQDs on SHED osteogenic differentiation. GOQDs were synthesized; then, the proliferation of SHEDs incubated in GOQDs at different concentrations was evaluated; and the live cells were observed. We observed that live SHEDs incubated in GOQDs emitted green fluorescence in the absence of chemical dyes, and 1, 10, and 50 μg/mL GOQDs significantly promoted SHED proliferation. Culture with the osteogenic induction medium containing 10 μg/mL GOQDs induced calcium nodule formation, increased alkaline phosphatase (ALP) activity, and upregulated SHED mRNA and protein levels of OCN, RUNX2, COL I, and β-catenin. With the addition of Dickkopf 1 (DKK-1) or β-catenin knockdown, expression levels of the above mRNAs and proteins were decreased in GOQD-treated SHEDs. In summary, at a concentration of 10 μg/mL, GOQDs promote SHED proliferation and osteogenic differentiation via the Wnt/β-catenin signaling pathway. This work provides new ideas and fundamental information on interactions between GOQDs and SHEDs that are relevant for the biomedical engineering field.
Collapse
|
5
|
Ceylan MN, Akdas S, Yazihan N. Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects. Biol Trace Elem Res 2021; 199:535-549. [PMID: 32451694 DOI: 10.1007/s12011-020-02193-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Bone-related diseases are very common problems, especially in the elderly population. Zinc takes part in the growth and maintenance of healthy bones. This meta-analysis aims to evaluate the effects of zinc supplementation or dietary zinc intake on serum zinc levels and bone turnover markers. A systematical research was performed with 2899 articles in PubMed, WoS, and Scopus for relevant articles in English which have mean/standard deviation values of serum zinc levels, dietary zinc intake/zinc supplementation (mg/day), and bone turnover markers up to February 2020. In the overall analysis, serum zinc level was significantly lower in patients with osteoporosis compared with controls (p 0.0002). Dietary zinc intake decreased in the fracture group compared with controls according to subgroup analysis patients with fracture (p 0.02). Zinc supplementation was effective on the femoral neck (p < 0.0001) and lumbar spine (p 0.05) bone mineral density (BMD). In the correlation analysis of the data obtained from all of the included studies, serum osteocalcin (p 0.0106, r - 0.9148) correlated with serum zinc level. In conclusion, serum zinc level and dietary zinc intake could have an essential role in preventing osteoporosis. Zinc supplementation might improve bone turnover markers for bone formation such as serum osteocalcin and serum alkaline phosphatase and also, BMD at the site of the femoral neck.
Collapse
Affiliation(s)
- Merve Nur Ceylan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Internal Medicine, Department of Pathophysiology, Ankara University, Morfoloji Building, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
Yang X, Zhao Q, Chen Y, Fu Y, Lu S, Yu X, Yu D, Zhao W. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:822-832. [PMID: 30873880 DOI: 10.1080/21691401.2019.1576706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Graphene and its derivatives, graphene oxide (GO) and graphene oxide quantum dots (GOQDs), have recently attracted much attention as bioactive factors in differentiating stem cells towards osteoblastic lineage. The stem cells from human exfoliated deciduous teeth (SHEDs) possess the properties of self-renewal, extensive proliferation, and multiple differentiation potential, and have gradually become one of the most promising mesenchymal stem cells (MSCs) in bone tissue engineering. The purpose of this study was to explore the effects of GO and GOQDs on the osteogenic differentiation of SHEDs. In this study, GO and GOQDs facilitated SHED proliferation up to 7 days in vitro at the concentration of 1 μg/ml. Because of their excellent fluorescent properties, GOQD uptake by SHEDs was confirmed and distributed in the SHED cytoplasm. Calcium nodules formation, alkaline phosphatase (ALP) activity, and RNA and protein expression increased significantly in SHEDs treated with osteogenic induction medium containing GOQDs but decreased with osteogenic induction medium containing GO. Interestingly, the Wnt/β-catenin signaling pathway appeared to be involved in osteogenic differentiation of SHEDs induced with GOQDs. In summary, GO and GOQDs at the concentration of 1 μg/ml promoted SHED proliferation. GOQDs induced the osteogenic differentiation of SHEDs, whilst GO slightly inhibited it.
Collapse
Affiliation(s)
- Xin Yang
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Qi Zhao
- b Xianning Central Hospital , The First Affiliated Hospital Of Hubei University Of Science And Technology , Xianning , China
| | - Yijing Chen
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Yuanxiang Fu
- c School of Chemistry and Chemical Engineering , Sun Yat-sen University , Zhuhai , China
| | - Shushen Lu
- c School of Chemistry and Chemical Engineering , Sun Yat-sen University , Zhuhai , China
| | - Xinlin Yu
- d International Department , The Affiliated High School of SCNU , Guangzhou , China
| | - Dongsheng Yu
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Wei Zhao
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
7
|
Dietary Natural N-Acetyl-d-Glucosamine Prevents Bone Loss in Ovariectomized Rat Model of Postmenopausal Osteoporosis. Molecules 2018; 23:molecules23092302. [PMID: 30205615 PMCID: PMC6225194 DOI: 10.3390/molecules23092302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/25/2023] Open
Abstract
Postmenopausal osteoporosis has seriously affected the life quality of elderly women. A natural polymer, chitin, obtained from shells of crab and shrimp, has been widely used in the biomedical field owing to its nontoxicity, biocompatibility, and biodegradability. In this study, natural N-acetyl-d-glucosamine (NAG) was prepared from liquefied chitin. The protective activities of NAG in postmenopausal osteoporosis were evaluated on Sprague Dawley rats and osteoblast-based models. Results showed that oral administration of NAG boosted trabecular bone volume and trabecular numbers. Additionally, the calcium content in the femur and tibia increased, and femoral biomechanical properties improved. Furthermore, NAG supplementation significantly lowered alkaline phosphatase levels and increased calcium content in the serum of ovariectomized rats. In vitro studies showed that NAG markedly promoted cell proliferation and stimulated osteoblast differentiation of mouse calvaria origin MC3T3-E1 cells with increased alkaline phosphatase activity in a concentration-dependent manner. Moreover, NAG effectively protected osteoblasts from oxidative damage induced by hydrogen peroxide. In conclusion, our data provide an additional foundation for dietary supplementation of NAG, which could protect and reverse osteopenia in postmenopausal women.
Collapse
|