1
|
Katebi M, Rahgozar S, Kazemi F, Rahmani S, Najafi Dorcheh S. GingerenoneA overcomes dexamethasone resistance by activating apoptosis and inhibiting cell proliferation in pediatric T-ALL cells. Cancer Sci 2023; 114:3984-3995. [PMID: 37619556 PMCID: PMC10551595 DOI: 10.1111/cas.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Plant-based combination strategies have been widely considered in cancer therapy to attenuate chemotherapeutics side effects. The anti-leukemic effect of the whole ginger extract was previously portrayed by our team, and the current study is centered around the cytotoxicity and mechanism of action of a phenolic subsidiary of ginger, GingerenoneA, on pediatric acute lymphoblastic leukemia. GingernoneA imposed, dose-dependently, inhibitory effects on the viability of T and B leukemia cell lines confirmed by MTT assays. Resistance to Dexamethasone, a mostly used chemotherapeutic in acute lymphoblastic leukemia treatments, was overcome by GingernoneA. A synergistic effect of Dexamethasone and GingrenoneA on T leukemia cell lines and patient primary cells was confirmed. Annexin-V/PI and acridine orange/ethidium bromide staining illustrated dose-dependent apoptosis in CCRF-CEM cells developed by GingerenoneA. The intrinsic and extrinsic apoptosis induction and antiproliferative attribution of GingerenoneA were validated by western blot and qPCR. Despite the supposed loss of function in CCRF-CEM cells, TP53 showed increased expression levels and functional activity upon treatment with GingernoneA. Bioinformatic studies revealed the conceivable impact of GingerenoneA on the reactivity of mutant P53 through its binding to Cys124. Our findings may provide novel strategies for therapeutic intervention to ameliorate pALL outcomes.
Collapse
Affiliation(s)
- Melika Katebi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Farnoosh Kazemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Saeideh Rahmani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Somayeh Najafi Dorcheh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| |
Collapse
|
2
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
3
|
Cui FQ, Tang L, Gao YB, Wang YF, Meng Y, Shen C, Shen ZL, Liu ZQ, Zhao WJ, Liu WJ. Effect of Baoshenfang Formula on Podocyte Injury via Inhibiting the NOX-4/ROS/p38 Pathway in Diabetic Nephropathy. J Diabetes Res 2019; 2019:2981705. [PMID: 31179339 PMCID: PMC6501129 DOI: 10.1155/2019/2981705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.
Collapse
Affiliation(s)
- Fang-qiang Cui
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Long Tang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yan-bin Gao
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yue-fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zi-long Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhi-qiang Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wen-jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
4
|
Tian N, Gao Y, Wang X, Wu X, Zou D, Zhu Z, Han Z, Wang T, Shi Y. Emodin mitigates podocytes apoptosis induced by endoplasmic reticulum stress through the inhibition of the PERK pathway in diabetic nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2195-2211. [PMID: 30034224 PMCID: PMC6047613 DOI: 10.2147/dddt.s167405] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Endoplasmic reticulum stress is associated with podocyte apoptosis in the pathogenesis of diabetic nephropathy (DN). A previous study has demonstrated that emodin has a protective effect in the kidney by suppressing proliferation of mesangial cells and inhibiting the renal tubular epithelial-to-mesenchymal transition. However, the effects of emodin on the podocyte apoptosis in DN and its mechanisms are unknown. Aim This study aimed to explore the effect of emodin on DN model KK-Ay mice and high glucose induced podocytes apoptosis via the PERK–eIF2α pathway. Methods KK-Ay mice model of DN were treated with emodin at dose of 40 and 80 mg/kg/day for 8 weeks. Urine albumin, serum creatinine, blood urea nitrogen levels and the renal histopathology in mice were performed. In vitro, conditionally immortalized mouse podocytes exposed to HG (30mM) were incubated with emodin. Cell viability was measured by CCK-8 assay. Additionally, we performed RNA interference and measured the apoptosis in cultured podocytes treated with emodin. Immunohistochemistry, immunofluorescence, western blot, and real-time PCR were used to detect gene and protein expression both in vivo and in vitro. Results The results showed that emodin treatment ameliorated urine albumin, serum creatinine, and blood urea nitrogen of DN mice. The pathological damage of kidney tissue was also improved after treatment with emodin. Moreover, emodin increased nephrin expression. Podocytes apoptosis and endoplasmic reticulum stress markers (GRP78) were significantly reduced upon emodin treatment. Furthermore, emodin treatment decreased the expression of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (P-PERK), phosphorylated P-eIF2α, ATF4, and CHOP. In vitro, emodin treatment was further found to decrease the GRP78 level induced by high glucose or tunicamycin (TM). Besides, emodin and PERK knockdown inhibited the apoptosis of podocytes cultured in high glucose by counteracting the upregulation of phosphorylated PERK, phosphorylated eIF2α, ATF4, and CHOP. Conclusion Overall, the findings indicate that emodin mitigates podocytes apoptosis by inhibiting the PERK-eIF2α signaling pathway in vivo and in vitro, and, therefore, exerts a protective action on podocytes in DN.
Collapse
Affiliation(s)
- Nianxiu Tian
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Xiaolei Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Xiaoming Wu
- Department of Paediatrics, Beijing Children's Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Dawei Zou
- Department of Endocrinology, Beijing Key Lab of TCM Collateral Disease theory Research, Fengtai District, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, Beijing Key Lab of TCM Collateral Disease theory Research, Fengtai District, Beijing, China
| | - ZheJi Han
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| |
Collapse
|
5
|
PGC-1α Mediated Peripheral Nerve Protection of Tongxinluo in STZ-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1287909. [PMID: 27504136 PMCID: PMC4967682 DOI: 10.1155/2016/1287909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 11/23/2022]
Abstract
Aim. To investigate the effect of Tongxinluo (Txl), a Chinese herbal compound, on diabetic peripheral neuropathy (DPN). Methods and Results. Diabetic rat model was established by peritoneal injection of streptozotocin (STZ). Txl ultrafine powder treatment for 16 weeks from the baseline significantly reversed the impairment of motor nerve conductive velocity (MNCV), mechanical hyperalgesia, and nerve structure. We further proved that Tongxinluo upregulates PGC-1α and its downstream factors including COX IV and SOD, which were involved in mitochondrial biogenesis. Conclusion. Our study indicates that the protective effect of Txl in diabetic neuropathy may be attributed to the induction of PGC-1α and its downstream targets. This finding may further illustrate the pleiotropic effect of the medicine.
Collapse
|