1
|
Abdel-Hakeem SS, Hassan FAM, Hifney AF, Salem SH. Combating the causative agent of amoebic keratitis, Acanthamoeba castellanii, using Padina pavonica alcoholic extract: toxicokinetic and molecular docking approaches. Sci Rep 2024; 14:13610. [PMID: 38871751 DOI: 10.1038/s41598-024-63691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.
Collapse
Affiliation(s)
- Sara S Abdel-Hakeem
- Parasitology Laboratory, Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt
| | - Faten A M Hassan
- Microbiology Department, Faculty of Science, Taiz University, Taiz, Yemen
| | - Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt
| | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
2
|
Niculescu VF. The evolutionary cancer genome theory and its reasoning. GENETICS IN MEDICINE OPEN 2023; 1:100809. [PMID: 39669240 PMCID: PMC11613669 DOI: 10.1016/j.gimo.2023.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 12/14/2024]
Abstract
Oncogenesis and the origin of cancer are still not fully understood despite the efforts of histologists, pathologists, and molecular geneticists to determine how cancer develops. Previous embryogenic and gene- and genome-based hypotheses have attempted to solve this enigma. Each of them has its kernel of truth, but a unifying, universally accepted theory is still missing. Fortunately, a unicellular cell system has been found in amoebozoans, which exhibits all the basic characteristics of the cancer life cycle and demonstrates that cancer is not a biological aberration but a consequence of molecular and cellular evolution. The impressive systemic similarities between the life cycle of Entamoeba and the life cycle of cancer demonstrate the deep homology of cancer to the amoebozoans, metazoans, and fungi ancestor that branched into the clades of Amoebozoa, Metazoa, and Fungi (AMF) and shows that the roots of oncogenesis and tumorigenesis lie in an ancient gene network, which is conserved in the genome of all metazoans and humans. This evolutionary gene network theory of cancer (evolutionary cancer genome theory) integrates previous findings and hypotheses and is one step further along the road to a universal cancer cell theory. It supports genetic cancer medicine and recommends soma-to-germ transitions-referred to as epithelial-to-mesenchymal transition in cancer-and cancer germline as potential targets. According to the evolutionary cancer genome theory, cancer exploits an ancient gene network module of premetazoan origin.
Collapse
|
3
|
Botwright NA, Rusu A, English CJ, Hutt O, Wynne JW. A High Throughput Viability Screening Method for the Marine Ectoparasite Neoparamoeba perurans. Protist 2020; 171:125773. [DOI: 10.1016/j.protis.2020.125773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022]
|
4
|
Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep 2020; 10:20025. [PMID: 33208814 PMCID: PMC7675990 DOI: 10.1038/s41598-020-77045-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/14/2022] Open
Abstract
Freshwater and soil habitats hold rich microbial communities. Here we address commonalities and differences between both habitat types. While freshwater and soil habitats differ considerably in habitat characteristics organismic exchange may be high and microbial communities may even be inoculated by organisms from the respective other habitat. We analyze diversity pattern and the overlap of taxa of eukaryotic microbial communities in freshwater and soil based on Illumina HiSeq high-throughput sequencing of the amplicon V9 diversity. We analyzed corresponding freshwater and soil samples from 30 locations, i.e. samples from different lakes across Germany and soil samples from the respective catchment areas. Aside from principle differences in the community composition of soils and freshwater, in particular with respect to the relative contribution of fungi and algae, soil habitats have a higher richness. Nevertheless, community similarity between different soil sites is considerably lower as compared to the similarity between different freshwater sites. We show that the overlap of organisms co-occurring in freshwater and soil habitats is surprisingly low. Even though closely related taxa occur in both habitats distinct OTUs were mostly habitat–specific and most OTUs occur exclusively in either soil or freshwater. The distribution pattern of the few co-occurring lineages indicates that even most of these are presumably rather habitat-specific. Their presence in both habitat types seems to be based on a stochastic drift of particularly abundant but habitat-specific taxa rather than on established populations in both types of habitats.
Collapse
|
5
|
Kuo YC, Lou YI, Rajesh R. Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons. J Drug Target 2020; 28:949-960. [PMID: 32338078 DOI: 10.1080/1061186x.2020.1761819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Quercetin (QU) and rosmarinic acid (RA) were loaded in phosphatidic acid-liposomes (QU/RA-PA-liposomes) with surface apolipoprotein E (ApoE) using a process of thin-film hydration, followed by covalent crosslinking to activate biological pathways for penetrating the blood-brain barrier (BBB) and redeeming the neuronal apoptosis from attack of β-amyloid 1-42 (Aβ1-42) and neurofibrillary tangles. The conjugation of liposomes with PA improved the activity of QU and RA against neurotoxicity of Aβ1-42. The fluorescent images of brain capillaries revealed that surface modification with ApoE improved the permeation ability of QU/RA-PA-ApoE-liposomes across the BBB. In addition, the highest therapeutic efficacy was obtained in the case of QU/RA-PA-ApoE-liposomes, compared to other QU/RA formulations studied using in vivo Aβ1-42-insulted rats mimicking Alzheimer's disease (AD). The cellular and molecular evidence from AD rats included the decrease in Aβ1-42 plaque formation and interleukin-6 secretion, increase in the neuronal count in Nissl staining, and reduction in the expression of phosphorylated extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, p38 kinase and tau protein at serine 202 as well as caspase-3. The use of PA-ApoE-liposomes as a dual targeting formulation enhances the QU and RA ability to infiltrate the BBB, docks Aβ1-42 plaques and can be a potent approach to rescue degenerated neurons from AD.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Minxiong, Taiwan
- Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Minxiong, Taiwan
| | - Yung-I Lou
- Department of Accounting, Providence University, Taichung, Taiwan
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Minxiong, Taiwan
| |
Collapse
|
6
|
The total conjugation process of the free-living ciliate Paraurostyla weissei (Ciliophora: Spirotrichea): the unexpected response to unfavorable fluctuations in the environment. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Mitsuwan W, Bunsuwansakul C, Leonard TE, Laohaprapanon S, Hounkong K, Bunluepuech K, Kaewjai C, Mahboob T, Sumudi Raju C, Dhobi M, Pereira MDL, Nawaz M, Wiart C, Siyadatpanah A, Norouzi R, Nissapatorn V. Curcuma longa ethanol extract and Curcumin inhibit the growth of Acanthamoeba triangularis trophozoites and cysts isolated from water reservoirs at Walailak University, Thailand. Pathog Glob Health 2020; 114:194-204. [PMID: 32315247 DOI: 10.1080/20477724.2020.1755551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
CURCUMA LONGA (C. longa) rhizome extract has been traditionally used to treat many infections. Curcumin, a pure compound isolated from the plant, has been documented to possess a wide spectrum of pharmacological effects. The present study aimed to investigate the effects of Thai medicinal plant extracts including C. longa extract and Curcumin on Acanthamoeba triangularis, a causative agent of human Acanthamoeba keratitis. The parasite was isolated from the recreational reservoir at Walailak University, Thailand. The organism was identified as A. triangularis using morphology and 18S rDNA nucleotide sequences. The pathogen was tested for their susceptibility to ethanol extracts of Thai medicinal plants based on eye infection treatment. The ethanol C. longa extract showed the strongest anti-Acanthamoeba activity against both the trophozoites and cysts, followed by Coscinium fenestratum, Coccinia grandis, and Acmella oleracea extracts, respectively. After 24 h, 95% reduction of trophozoite viability was significantly decreased following the treatment with C. longa extract at 125 µg/mL, compared with the control (P < 0.05). The extract at 1,000 µg/mL inhibited 90% viability of Acanthamoeba cyst within 24 h, compared with the control. It was found that the cysts treated with C. longa extract at 500 µg/mL demonstrated abnormal shape after 24 h. The MIC values of C. longa extract and Curcumin against the trophozoites were 125 and 62.5 µg/mL, respectively. While the MICs of the extract and curcumin against the cysts were 500 and 1,000 µg/mL, respectively. The results suggested the potential medicinal benefits of C. longa extract and Curcumin as the alternative treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University , Nakhon Si Thammarat, Thailand
| | - Chooseel Bunsuwansakul
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University , Nakhon Si Thammarat, Thailand
| | - Theodore Ebenezer Leonard
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University , Nakhon Si Thammarat, Thailand.,Faculty of Pharmacy, Indonesia International Institute for Life Sciences , Jakarta, Indonesia
| | | | - Kruawan Hounkong
- Faculty of Medicine, Princess of Naradhiwas University , Narathiwat, Thailand
| | - Kingkan Bunluepuech
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University , Nakhon Si Thammarat, Thailand
| | - Chalermpon Kaewjai
- Faculty of Medical Technology, Rangsit University , Pathum Thani, Thailand
| | - Tooba Mahboob
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Chandramathi Sumudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University , Delhi, India
| | - Maria de Lourdes Pereira
- Department of Medical Sciences and CICECO-Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University , Dammam, Saudi Arabia
| | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences , Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz , Tabriz, Iran
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University , Nakhon Si Thammarat, Thailand
| |
Collapse
|
8
|
Durand PM, Barreto Filho MM, Michod RE. Cell Death in Evolutionary Transitions in Individuality. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:651-662. [PMID: 31866780 PMCID: PMC6913816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Programmed cell death (PCD) in cell groups and microbial communities affects population structures, nutrient recycling, and sociobiological interactions. A less explored area is the role played by PCD in the emergence of higher-level individuals. Here, we examine how cell death impacted evolutionary transitions in individuality (ETIs). The focus is on three specific ETIs - the emergence of the eukaryote cell, multicellularity, and social insects - and we review the theoretical and empirical evidence for the role of PCD in these three transitions. We find that PCD likely contributed to many of the processes involved in eukaryogenesis and the transition to multicellularity. PCD is important for the formation of cooperative groups and is a mechanism by which mutual dependencies between individuals evolve. PCD is also a conflict mediator and involved in division of labor in social groups and in the origin of new cell types. In multicellularity, PCD facilitates the transfer of fitness to the higher-level individual. In eusocial insects, PCD of the gonadal cells in workers is the basis for conflict mediation and the division of labor in the colony. In the three ETIs discussed here, PCD likely played an essential role, without which alternate mechanisms would have been necessary for these increases in complexity to occur.
Collapse
Affiliation(s)
- Pierre M. Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa,To whom all correspondence should be addressed: Pierre M. Durand, Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000, South Africa; ; ORCID number 0000-0002-9614-1371
| | - Marcelo M. Barreto Filho
- Post-Graduate Program in Ecology and Natural Resources, Department of Botany, Phycology Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Espinosa A, Paz-Y-Miño-C G. Discrimination Experiments in Entamoeba and Evidence from Other Protists Suggest Pathogenic Amebas Cooperate with Kin to Colonize Hosts and Deter Rivals. J Eukaryot Microbiol 2019; 66:354-368. [PMID: 30055104 PMCID: PMC6349510 DOI: 10.1111/jeu.12673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023]
Abstract
Entamoeba histolytica is one of the least understood protists in terms of taxa, clone, and kin discrimination/recognition ability. However, the capacity to tell apart same or self (clone/kin) from different or nonself (nonclone/nonkin) has long been demonstrated in pathogenic eukaryotes like Trypanosoma and Plasmodium, free-living social amebas (Dictyostelium, Polysphondylium), budding yeast (Saccharomyces), and in numerous bacteria and archaea (prokaryotes). Kin discrimination/recognition is explained under inclusive fitness theory; that is, the reproductive advantage that genetically closely related organisms (kin) can gain by cooperating preferably with one another (rather than with distantly related or unrelated individuals), minimizing antagonism and competition with kin, and excluding genetic strangers (or cheaters = noncooperators that benefit from others' investments in altruistic cooperation). In this review, we rely on the outcomes of in vitro pairwise discrimination/recognition encounters between seven Entamoeba lineages to discuss the biological significance of taxa, clone, and kin discrimination/recognition in a range of generalist and specialist species (close or distantly related phylogenetically). We then focus our discussion on the importance of these laboratory observations for E. histolytica's life cycle, host infestation, and implications of these features of the amebas' natural history for human health (including mitigation of amebiasis).
Collapse
Affiliation(s)
- Avelina Espinosa
- Department of Biology, Roger Williams University, Bristol, Rhode Island
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| | - Guillermo Paz-Y-Miño-C
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| |
Collapse
|
10
|
|
11
|
A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria. Sci Rep 2017; 7:40213. [PMID: 28091526 PMCID: PMC5238400 DOI: 10.1038/srep40213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intra-erythrocytic growth of malaria parasite is known to induce redox stress. In addition to haem degradation which generates reactive oxygen species (ROS), the parasite is also thought to efflux redox active homocysteine. To understand the basis underlying accumulation of homocysteine, we have examined the transsulphuration (TS) pathway in the parasite, which is known to convert homocysteine to cysteine in higher eukaryotes. Our bioinformatic analysis revealed absence of key enzymes in the biosynthesis of cysteine namely cystathionine-β-synthase and cystathionine-γ-lyase in the parasite. Using mass spectrometry, we confirmed the absence of cystathionine, which is formed by enzymatic conversion of homocysteine thereby confirming truncation of TS pathway. We also quantitated levels of glutathione and homocysteine in infected erythrocytes and its spent medium. Our results showed increase in levels of these metabolites intracellularly and in culture supernatants. Our results provide a mechanistic basis for the long-known occurrence of hyperhomocysteinemia in malaria. Most importantly we find that homocysteine induces the transcription factor implicated in gametocytogenesis namely AP2-G and consequently triggers sexual stage conversion. We confirmed this observation both in vitro using Plasmodium falciparum cultures, and in vivo in the mouse model of malaria. Our study implicates homocysteine as a potential physiological trigger of gametocytogenesis.
Collapse
|